| 
	[1] 王万良, 李卓蓉. 生成式对抗网络研究进展 [J]. 通信学报, 2018, 39(2):135-148
 
	[2] Goodfellow J I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets [C] //Proc of the Advances in Neural Information Processing Systems. New York: ACM, 2014: 1-9
 
	[3] Nikolaidis K, Kristiansen S, Goebel V, et al. Augmenting physiological time series data: A case study for sleep apnea detection [C] //Proc of the ECML PKDD 2019: Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2019: 376-399
 
	[4] Hazra D, Byun Y-C. SynSigGAN: Generative adversarial networks for synthetic biomedical signal generation [J]. Biology, 2020, 9(12): 441:1-441:20
 
	[5] Yoon J, Jarrett D, Schaar M. Time-series generative adversarial networks [C] //Proc of the Advances in Neural Information Processing Systems. New York: ACM, 2019: 5508–5518
 
	[6] Kaushik S, Choudhury A, Natarajan S, et al. Medicine expenditure prediction via a variance-based generative adversarial network [J]. IEEE Access, 2020, 8: 110947-110958
 
	[7] Guo Zijian, Wan Yiming, Ye Hao. A data imputation method for multivariate time series based on generative adversarial network [J]. Neurocomputing, 2019, 360: 185-197
 
	[8] Kolokolova A, Billard M, Bishop R, et al. Gans & reels: Creating irish music using a generative adversarial network [J]. arXiv preprint, arXiv:2010.15772, 2020
 
	[9] Cheng P-S, Lai C-Y, Chang C-C, et al. A variant model of TGAN for music generation [C] //Proc of the 2020 Asia Service Sciences and Software Engineering Conf. New York: ACM, 2020: 40-45
 
	[10] Zhu Guangxuan, Zhao Hongbo, Liu Haoqiang, et al. A novel LSTM-GAN algorithm for time series anomaly detection [C] //Proc of the 2019 Prognostics and System Health Management Conf. Piscataway, NJ: IEEE, 2019: 1-6
 
	[11] Esteban C, Hyland S L, Rätsch G. Real-valued (medical) time series generation with recurrent conditional GANs [J]. arXiv preprint, arXiv:1706.02633, 2017
 
	[12] Culnane C, Rubinstein B I P, Teague V. Health data in an open world [J]. arXiv preprint, arXiv:1712.05627, 2017
 
	[13] Quan H, Dinh N T, Trung L, et al. MGAN: Training generative adversarial nets with multiple generators [C] //Proc of the Int Conf on Learning Representations. BC, Canada: ICLR, 2018:1-23
 
	[14] Benyamin G, Aydin G, Mark C, et al. Fitting a mixture distribution to data: Tutorial [J]. arXiv preprint, arXiv:1901.06708, 2019
 
	[15] Dinh N T, Trung L, Hung V, et al. Dual discriminator generative adversarial nets [C] //Proc of the 31st Int Conf on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2017: 2667-2677
 
	[16] Martin A, Soumith C, Leon B. Wasserstein generative adversarial networks [C] //Proc of the Int Conf on machine learning.New York: ACM, 2017: 214-223
 
	[17] Ishaan G, Faruk A, Martin A, et al. Improved training of wasserstein GANs [C] //Proc of the 31st Int Conf on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2017: 5769-5779
 
	[18] Mirza M, Osindero S. Conditional generative adversarial nets [J]. arXiv preprint, arXiv:1411.1784, 2014: 1-7
 
	[19] Springenberg J T, Dosovitskiy A, Brox T, et al. Striving for simplicity: The all convolutional net [C] //Proc of the Int Conf on Learning Representations. BC, Canada: ICLR, 2015: 1-14
 
	[20] Jordon J, Yoon J, Schaar M. PATE-GAN: Generating synthetic data with differential privacy guarantees [C] //Proc of the Int Conf on Learning Representations. BC, Canada: ICLR, 2019:1-21
 
	[21] Dwork C. Differential privacy [C] //Proc of the 33rd Int Conf on Automata, Languages and Programming-Volume Part II. Berlin: Springer, 2006:1-12
 
	[22] Dwork C, Roth A. The algorithmic foundations of differential privacy [J]. Foundations and Trends® in Theoretical Computer Science, 2014, 9 (3/4): 211-407
 
	[23] Song J, Ye J C. Federated CycleGAN for privacy-preserving image-to-image translation [J]. arXiv preprint, arXiv: 2106.09246, 2021
 
	[24] Ho S, Qu Y, Gu B, et al. DP-GAN: Differentially private consecutive data publishing using generative adversarial nets [J]. Journal of Network and Computer Applications, 2021, 185: 103066:1-103066:11
 
	[25] Wiese M, Knobloch R, Korn R, et al. Quant gans: Deep generation of financial time series [J]. Quantitative Finance, 2020, 20(9):1419-1440
 
	[26] Qu F, Liu J, Ma Y, et al. A novel wind turbine data imputation method with multiple optimizations based on GANs [J]. Mechanical Systems and Signal Processing, 2020, 139: 106610:1-106610:16
 
	[27] Leangarun T, Tangamchit P, Thajchayapong S. Stock price manipulation detection using generative adversarial networks [C] //Proc of the 2018 IEEE Symp Series on Computational Intelligence. Piscataway, NJ: IEEE, 2018: 2104-2111
 
	[28] 陈阳.著作权法下“换脸技术”的法律约束缺位与规制路径 [J]. 信息安全研究,2020,6(12):1109-1117
 
	[29] 周琳娜,吕欣一.基于GAN图像生成的信息隐藏技术综述 [J]. 信息安全研究,2019,5(9):771-777
 |