[1]Papadogiannaki E, Tsirantonakis G, Ioannidis S. Network intrusion detection in encrypted traffic[C] Proc of 2022 IEEE Conf on Dependable and Secure Computing (DSC). Piscataway, NJ: IEEE, 2022: 18[2]Wala F B, Cotton C. Unconstrained endpoint security system: UEPTSS[J]. International Journal of Network Security & Its Applications, 2018, 10(2): 112[3]曾勇, 吴正远, 董丽华, 等. 加密流量中的恶意流量识别技术[J]. 西安电子科技大学学报, 2021, 48(3): 170187[4]韩宇, 方滨兴, 崔翔, 等. StealthyFlow: 一种对抗条件下恶意代码动态流量伪装框架[J]. 计算机学报, 2021, 44(5): 948962[5]冀甜甜, 方滨兴, 崔翔, 等. 深度学习赋能的恶意代码攻防研究进展[J]. 计算机学报, 2021, 44(4): 669695[6]王淞, 彭煜玮, 兰海, 等. 数据集成方法发展与展望[J]. 软件学报, 2020, 31(3): 893908[7]Pan Tong, Chen Wei,Long Qian. Network anomaly detection based on ensemble learning[COL] Proc of the 3rd Int Conf on Computer Science and Communication Technology(ICCSCT). 2022 [20230712]. https:www.spiedigitallibrary.orgconferenceproceedingsofspie12506125060XNetworkanomalydetectionbasedonensemblelearning10.111712.2662499.full?SSO=1[8]Deepa V, Sudar K M, Deepalakshmi P. Design of ensemble learning methods for DDoS detection in SDN environment[C] Proc of 2019 Int Conf on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). Piscataway, NJ: IEEE, 2019: 16[9]Neha G,Vinita J,Punam B. CSEIDS: Using cotsensitive deep learning and ensemble algorithms to handle class imbalance in networkbased intrusion detection systems[JOL]. Computers & Security, 2022 [20230712]. https:www.sciencedirect.comsciencearticleabspiiS0167404821 003230#previewsectioncitedby[10]Zhou Yuyang,Cheng Guang,Jiang Shanqing. Building an efficient intrusion detection system based on feature selection and ensemble classifier[JOL]. Computer Networks, 2020 [20230712]. https:www.sciencedirect.comsciencearticleabspiiS1389128619314203[11]Mhawi D N, Aldallal A, Hassan S. Advanced feature selection based hybrid ensemble learning algorithms for network intrusion detection systems[J]. Symmetry, 2022, 14(7): 1461[12]Li Jia, Yun Xiaochun,Tian Mao, et al. A method of HTTP malicious traffic detection on mobile networks[C] Proc of 2019 IEEE Wireless Communications and Networking Conf (WCNC). Piscataway, NJ: IEEE, 2019: 18[13]Torroledo I,Camacho D L,Bahnsen C A. Hunting malicious TLS certificates with deep neural networks[C] Proc of the 11th ACM Workshop on Artificial Intelligence and Security. New York: ACM, 2018: 6473[14]Suh K,Figueiredo D R, Kurose J, et al. Characterizing and detecting relayed traffic: A casestudy using skype[C] Proc of INFOCOM’06. Piscataway, NJ: IEEE, 2006[15]Sharafaldin I, Lashkari H A, Ghorbani A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[COL] Proc of the 4th Int Conf on Information Systems Security and Privacy. 2018: 108116 [20230718]. https:www.semanticscholar.orgpaperTowardGeneratingaNewIntrusionDetectionDatasetShara faldinLashkaria27089efabc5f4abd5ddf2be2a409bff41f31199 |