[1]Riad K, Huang Teng, Ke Lishan. A dynamic and hierarchical access control for IoT in multiauthority cloud storage[J]. Journal of Network and Computer Applications, 2020, 160: 102633[2]Maniriho P, Niyigaba E, Bizimana Z, et al. Anomalybased intrusion detection approach for IoT networks using machine learning[C] Proc of Int Conf on Computer Engineering, Network, and Intelligent Multimedia. Piscataway, NJ: IEEE, 2020: 303308[3]Chaabouni N, Mosbah M, Zemmari A, et al. Network intrusion detection for IoT security based on learning techniques[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 26712701 [4]Raza S, Wallgren L, Voigt T. SVELTE: Realtime intrusion detection in the Internet of Things[J]. Ad Hoc Networks, 2013, 11(8): 26612674 [5]Bertino E, Islam N. Botnets and Internet of things security[J]. Computer, 2017, 50(2): 7679[6]Ali A, Shamsuddin S M, Ralescu A L. Classification with class imbalance problem[J]. International Journal of Soft Computing and Its Applications, 2013, 5(3): 176204[7]Wilson D L. Asymptotic properties of nearest neighbor rules using edited data[J]. IEEE Trans on Systems, Man, and Cybernetics, 2007, 2(3): 408421[8]Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic minority oversampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321357[9]He H, Bai Y, Garcia E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C] Proc of IEEE Int Joint Conf on Neural Networks. Piscataway, NJ: IEEE, 2008: 13221328[10]Kwon D, Kim H, Kim J, et al. A survey of deep learningbased network anomaly detection[J]. Cluster Computing, 2019, 22: 949961 [11]He Y, Mendis G J, Wei J. Realtime detectionof false data injection attacks in smart grid: A deep learningbased intelligent mechanism[J]. IEEE Trans on Smart Grid, 2017, 8(5): 25052516[12]Li D, Deng L, Lee M, et al. IoT data feature extraction and intrusion detection system for smart cities based on deep migration learning[J]. International Journal of Information Management, 2019, 49: 533545 [13]Cordero C G, Hauke S, Mühlhuser M, et al. Analyzing flowbased anomaly intrusion detection using replicator neural networks[C] Proc of the 14th Annual Conf on Privacy, Security and Trust. Piscataway, NJ: IEEE, 2016: 317324[14]杨晓文, 张健, 况立群, 等. 融合CNNBiGRU和注意力机制的网络入侵检测模型[J]. 信息安全研究, 2024, 10(3): 202208[15]LeCun Y, Bottou L, Bengio Y, et al. Gradientbased learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 22782324[16]Selvin S, Vinayakumar R, Gopalakrishnan E A, et al. Stock price prediction using LSTM, RNN and CNNsliding window model[C] Proc of Int Conf on Advances in Computing, Communications and Informatics. Piscataway, NJ: IEEE, 2017: 16431647[17]Hochreiter S, Schmidhuber J. Long shorttermmemory[J]. Neural Computation, 1997, 9(8): 17351780 [18]Wu Q, Guan F, Lv C, et al. Ultrashortterm multistep wind power forecasting based on CNNLSTM[J]. IET Renewable Power Generation, 2021, 15(5): 10191029 [19]李泽一, 王攀. 基于代价敏感度的改进型K近邻异常流量检测算法[J]. 南京邮电大学学报:自然科学版, 2022, 42(2): 8592[20]李海涛, 王瑞敏, 董卫宇, 等. 一种基于GRU的半监督网络流量异常检测方法[J]. 计算机科学, 2023, 50(3): 380390[21]Choudhary S, Kesswani N. Analysis of KDDCup’99, NSLKDD and UNSWNB15 datasets using deep learning in IoT[J]. Procedia Computer Science, 2020, 167: 15611573[22]Mushtaq E, Zameer A, Khan A. A twostage stacked ensemble intrusion detection system using five base classifiers and MLP with optimal feature selection[J]. Microprocessors and Microsystems, 2022, 94: 104660[23]Tama B A, Comuzzi M, Rhee K H. TSEIDS: A twostage classifier ensemble for intelligent anomalybased intrusion detection system[J]. IEEE Access, 2019, 7: 9449794507[24]Manimurugan S, Majdi A, Mohmmed M, et al. Intrusion detection in networks using crow search optimization algorithm with adaptive neurofuzzy inference system[J]. Microprocessors and MicroSystems, 2020, 79: 10326
|