[1]Szabo N. Formalizing and securing relationships on public networks[J]. First Monday, 1997, 2(9): 121[2]Nakamoto S. Bitcoin: A peertopeer electronic cash system[JOL]. 2008 [20230615]. http:dx.doi.org[3]Buterin V. A nextgeneration smart contract and decentralized application platform[JOL]. 2014 [20240920]. https:ethereum.orgcontentwhitepaperwhitepaperpdfEthereum_Whitepaper__Buterin_2014.pdf[4]Liao J, Tsai T T, He C K, et al. SoliAudit: Smart vontract vulnerability assessment based on machine learning and fuzz testing[C] Proc of the 6th Int Conf on Internet of Things: Systems, Management and Security. Piscataway, NJ: IEEE, 2019: 458465[5]Liu J, Liu Z. Asurvey on security verification of blockchain smart contracts[J]. IEEE Access, 2019, 7: 7789477904[6]陈乔松, 何小阳, 许文杰, 等. 基于预训练技术和专家知识的重入漏洞检测[J]. 计算机科学, 2022, 49(S2): 713720[7]沈传年. 智能合约安全漏洞研究现状[J]. 信息安全研究, 2023, 9(12): 11661172[8]Zhang L, Chen W, Wang W, et al. CBGRU: A detection method of smart contract vulnerability based on a hybrid model[J]. Sensors, 2022, 22(9): 3577[9]Luu L, Chu D H, Olickel H, et al. Making smart contracts smarter[C] Proc of the 2016 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2016: 254269[10]Tsankov P, Dan A, Drachsler C D, et al. Securify: Practical security analysis of smart contracts[C] Proc of the 2018 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2018: 6782[11]Mueller B. Mythril: A framework for bug hunting on the ethereum blockchain[EBOL]. (20170711) [20230615]. https:mythx.io[12]Feist J, Grieco G, Groce A. Slither: Astatic analysis framework for smart contracts[C] Proc of the 2nd IEEEACM Int Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). Piscataway, NJ: IEEE, 2019: 815[13]Tikhomirov S, Voskresenskaya E, Ivanitskiy I, et al. SmartCheck: Static analysis of ethereum smart contracts[C] Proc of the 1st Int Workshop on Emerging Trends in Software Engineering for Blockchain. New York: ACM, 2018: 916[14]Jiang B, Liu Y, Chan W K. ContractFuzzer: Fuzzing smart contracts for vulnerability detection[C] Proc of the 33rd IEEEACM Int Conf on Automated Software Engineering (ASE). Piscataway, NJ: IEEE, 2018: 259269[15]Li Z, Zou D, Xu S,et al. VulDeePecker: A deep learningbased system for vulnerability detection[J]. arXiv preprint, arXiv:1801.01681, 2018[16]Harer J A, Kim L Y, Russell R L, et al. Automated software vulnerability detection with machine learning[J]. arXiv preprint, arXiv:1803.04497, 2018[17]Cao S, Sun X, Bo L, et al. BGNN4VD: Constructing bidirectional graph neuralnetwork for vulnerability detection[J]. Information and Software Technology, 2021, 136: 106567[18]Yu X, Zhao H, Hou B, et al. DeeSCVHunter: A deep learningbased framework for smart contract vulnerability detection[C] Proc of the 2021 Int Joint Conf on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2021: 18[19]Qian P, Liu Z, He Q, et al. Towards automated reentrancy detection for smart contracts based on sequential models[J]. IEEE Access, 2020, 8: 1968519695[20]Goldberg Y, Levy O. Word2vec Explained: Deriving Mikolov et al.’s negativesampling wordembedding method[J]. arXiv preprint, arXiv:1402.3722, 2014[21]张光华, 刘永升, 王鹤, 等. 基于BiLSTM和注意力机制的智能合约漏洞检测方案[J]. 信息网络安全, 2022, 22(9): 4654[22]Wang Y, Li L. Sentiment analysis using Word2vecCNNBiLSTM classification[C] Proc of the 7th Int Conf on Social Networks Analysis, Management and Security (SNAMS). Piscataway, NJ: IEEE, 2020: 15[23]Durieux T, Ferreira J F, Abreu R, et al. Empiricalreview of automated analysis tools on 47,587 Ethereum smart contracts[C] Proc of the 42nd ACMIEEE Int Conf on Software Engineering. New York: ACM, 2020: 530541[24]Durieux T, Madeiral F, Martinez M, et al. Empirical review of Java program repair tools: A largescale experiment on 2,141 bugs and 23,551 repair attempts[C] Proc of the 27th ACM Joint Meeting on European Software Engineering Conf and Symp on the Foundations of Software Engineering. New York: ACM, 2019: 302313[25]Qiao S, Han N, Huang J,et al. A dynamic convolutional neural network based sharedbike demand forecasting model[J]. ACM Trans on Intelligent Systems and Technology, 2021, 12(6): 124[26]Abadi M, Agarwal A, Barham P, et al. TensorFlow: Largescale machine learning on heterogeneous distributed systems[J]. arXiv preprint, arXiv:1603.04467, 2016 |