[1]Hussain S, Chowdhury O, Mehnaz S, et al. LTEInspector: A systematic approach for adversarial testing of 4G LTE[C] Proc of Network and Distributed Systems Security Symp (NDSS). Rosten, VA, USA: Internet Society, 2018: 115[2]Hernandez G, Muench M, Maier D, et al. FIRMWIRE: Transparent dynamic analysis for cellular baseband firmware[C] Proc of Network and Distributed Systems Security Symp (NDSS). San Rosten, VA, USA: Internet Society, 2022: 119[3]Chen Y, Yao Y, Wang X F, et al. Bookworm game: Automatic discovery of lte vulnerabilities through documentation analysis[C] Proc of 2021 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2021: 11971214[4]Golde N, Komaromy D. Breaking Band: Reverse engineering and exploiting the shannon baseband[EBOL]. [20230828]. https:comsecuris.comslidesrecon2016breaking_band.pdf[5]Raza M T, Anwar F M, Lu S. Exposing LTE security weaknesses at protocol interlayer, and interradio interactions[C] Proc of the 13th Security and Privacy in Communication Networks. Berlin: Springer, 2018: 312338[6]Shaik A, Borgaonkar R, Park S, et al. New vulnerabilities in 4G and 5G cellular access network protocols: exposing device capabilities[C] Proc of the 12th Conf on Security and Privacy in Wireless and Mobile Networks. New York: ACM, 2019: 221231[7]Chlosta M, Rupprecht D, Holz T, et al. LTE security disabled: Misconfiguration in commercial networks[C] Proc of the 12th Conf on Security and Privacy in Wireless and Mobile Networks. New York: ACM, 2019: 261266[8]Kim E, Kim D, Park C J, et al. BaseSpec: Comparative analysis of baseband software and cellular specifications for L3 protocols[C] Proc of Network and Distributed Systems Security Symp (NDSS). Rosten, VA, USA: Internet Society, 2021: 118[9]Kim H, Lee J, Lee E, et al. Touching the untouchables: Dynamic security analysis of the LTE control plane[C] Proc of 2019 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2019: 11531168[10]Li W, Wu Q, Cui B. Statebased fuzzing for S1AP[C] Proc of the 13th Int Conf on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS2019). Berlin: Springer, 2020: 362372[11]Garbelini M E, Shang Z, Chattopadhyay S, et al. Towards automated fuzzing of 4G5G protocol implementations over the air[C] Proc of IEEE Global Communications Conf 2022. Piscataway, NJ: IEEE, 2022: 8692[12]3rd Generation Partnership Project (3GPP). 3GPP TS 24.301, NonAccessStratum (NAS) protocol for Evolved Packet System (EPS); Stage 3[EBOL]. (20220923) [20230828]. https:www.3gpp.orgftpSpecsarchive24_series[13]Hussain S R, Karim I, Ishtiaq A A, et al. Noncompliance as deviant behavior: An automated blackbox noncompliance checker for 4g lte cellular devices[C] Proc of the 2021 ACM SIGSAC Conf on Computer and Communications Security (CCS’21). New York: ACM, 2021: 10821099[14]Pham V T, Bhme M, Roychoudhury A. AFLNet: A greybox fuzzer for network protocols [C] Proc of the 13th IEEE Int Conf on Software Testing, Validation and Verification (ICST). Piscataway, NJ: IEEE, 2020: 460465[15]Johansson W, Svensson M, Larson U E, et al. TFuzz: Modelbased fuzzing for robustness testing of telecommunication protocols[C] Proc of the 7th IEEE Int Conf on Software Testing, Verification and Validation. Piscataway, NJ: IEEE, 2014: 323332[16]王洪义, 沙乐天. 基于静态分析和模糊测试的路由器漏洞检测方法[J]. 信息安全研究, 2024, 10(1): 4047[17]吴礼发. 网络协议工程[M]. 北京: 电子工业出版社, 2011: 235240[18]陈涛, 潘雪增, 陈健, 等. 基于FSM的协议一致性测试序列生成算法研究[J].计算机工程与应用, 2010, 46(6): 6062[19]Li J, Li S, Sun G, et al. SNPSFuzzer: A fast greybox fuzzer for stateful network protocols using snapshots[J]. IEEE Trans on Information Forensics and Security, 2022, 17(1): 26732687[20]3rd Generation Partnership Project (3GPP). 3GPP TS 24.007, Mobile radio interface signalling layer 3; General aspects[EBOL]. (20220923) [20230828]. https:www.3gpp.orgftpSpecsarchive24_series |