[1]纪守领, 杜天宇, 李进锋, 等. 机器学习模型安全与隐私研究综述[J]. 软件学报, 2021, 32(1): 4167[2]CorreiaSilva J R, Berriel R F, Badue C, et al. Copycat CNN: Stealing knowledge by persuading confession with random nonlabeled data[C] Proc of 2018 Int Joint Conf on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2018: 18[3]De Cristofaro E. An overview of privacy in machine learning[J]. arXiv preprint, arXiv:2005.08679, 2020[4]Kesarwani M, Mukhoty B, Arya V, et al. Model extraction warning in mlaas paradigm[C] Proc of the 34th Annual Computer Security Applications Conference. New York: ACM, 2018: 371380[5]Kariyappa S, Qureshi M K. Defendingagainst model stealing attacks with adaptive misinformation[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 770778[6]Guo J, Potkonjak M. Watermarking deep neural networks for embedded systems[C] Proc of 2018 IEEEACM Int Conf on ComputerAided Design (ICCAD). Piscataway, NJ: IEEE, 2018: 18[7]Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 8490[8]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 770778[9]Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition[J]. arXiv preprint, arXiv:1409.1556, 2014[10]Xiao H, Rasul K, Vollgraf R. Fashionmnist: A novel image dataset for benchmarking machine learning algorithms[J]. arXiv preprint, arXiv:1708.07747, 2017[11]Coates A, Ng A, Lee H. An analysis of singlelayer networks in unsupervised feature learning[C] Proc of the 14th Int Conf on Artificial Intelligence and Statistics. Cambridge, USA: JMLR, 2011: 215223[12]Zhang Z, Song Y, Qi H. Age progressionregression by conditional adversarial autoencoder[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2017: 58105818[13]Liu Y, Wen R, He X, et al. MLdoctor: Holistic risk assessment of inference attacks against machine learning models[C] Proc of the 31st USENIX Security Symposium (USENIX Security 22). Berkeley, CA: USENIX Association, 2022: 45254542 |