[1]Jan S U, Ahmed S, Shakhov V, et al. Toward a lightweight intrusion detection system for the Internet of things[J]. IEEE Access, 2019, 7: 4245042471[2]乔楠, 李振兴, 赵国生. XGBoostRF的物联网入侵检测模型[J]. 小型微型计算机系统, 2022, 43(1): 152158[3]卢明星, 杜国真, 季泽旭. 基于深度迁移学习的网络入侵检测[J]. 计算机应用研究, 2020, 37(9): 28112814[4]Zhang Y, Li P, Wang X. Intrusion detection for IoT based on improved genetic algorithm and deep belief network[J]. IEEE Access, 2019, 7: 3171131722[5]Javed A R, Ur Rehman S, Khan M U, et al. CANintelliIDS: Detecting invehicle intrusion attacks on a controller area network using CNN and attentionbased GRU[J]. IEEE Trans on Network Science and Engineering, 2021, 8(2): 14561466[6]李晓佳, 赵国生, 汪洋, 等. 面向CNN和RNN改进的物联网入侵检测模型[J]. 计算机工程与应用, 2023, 59(14): 242250[7]Dogani J, Khunjush F, Seydali M. Host load prediction in cloud computing with discrete wavelet transformation (DWT) and bidirectional gated recurrent unit (BiGRU) network[J]. Computer Communications, 2023, 198: 157174[8]Bushra S N, Subramanian N, Chandrasekar A. An optimal and secure environment for intrusion detection using hybrid optimization based ResNet 101C model[J]. PeertoPeer Networking and Applications, 2023, 16(5): 118[9]Mu J, He H, Li L, et al. A hybrid network intrusion detection model based on CNNLSTM and attention mechanism[C] Proc of the Int Conf on Frontiers in Cyber Security. Berlin: Springer, 2021: 214229[10]杨晓文, 张健, 况立群, 等. 融合CNNBiGRU和注意力机制的网络入侵检测模型[J]. 信息安全研究, 2024, 10(3): 202208[11]Batista G E A P A, Prati R C, Monard M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 2029[12]Wang Q, Wu B, Zhu P, et al. ECANet: Efficient channel attention for deep convolutional neural networks[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition(CVPR). Piscataway, NJ: IEEE, 2020: 1153411542[13]Xie S, Girshick R, Dollár P, et al. Aggregated residual transformationsfor deep neural networks[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition(CVPR). Piscataway, NJ: IEEE, 2017: 59875995 |