[1]Lashkari A H, Gil G D, Mamun M S I, et al. Characterization of Tor traffic using time based features[C] Proc of Int Conf on Information Systems Security and Privacy. Setúbal, Portugal: SciTePress, 2017: 253262[2]Karagiannis T, Broido A, Faloutsos M, et al. Transport layer identification of P2P traffic[C] Proc of the 4th ACM SIGCOMM Conf on Internet Measurement. New York: ACM, 2004: 121134[3]elebi M, zbilen A, Yavanolu U. A comprehensive survey on deep packet inspection for advanced network traffic analysis: Issues and challenges[J]. Nigde Omer Halisdemir University Journal of Engineering Sciences, 2023, 12(1): 129[4]Saputra F A, Nadhori I U, Barry B F. Detecting and blocking onion router traffic using deep packet inspection[C] Proc of 2016 Int Electronics Symposium (IES). Piscataway, NJ: IEEE, 2016: 283288[5]He G, Yang M, Luo J, et al. Inferring application type information from Tor encrypted traffic[C] Proc of the 2nd Int Conf on Advanced Cloud and Big Data. Piscataway, NJ: IEEE, 2014: 220227[6]Liang D, He Y. Obfs4 traffic identification based on multiplefeature fusion[C] Proc of 2020 IEEE Int Conf on Power, Intelligent Computing and Systems (ICPICS). Piscataway, NJ: IEEE, 2020: 323327[7]王腾飞, 蔡满春, 岳婷, 等. HistogramXGBoost的Tor匿名流量识别[J]. 计算机工程与应用, 2021, 57(14): 110115[8]Shapira T, Shavitt Y. Flowpic: Encrypted internet traffic classification is as easy as image recognition[C] Proc of IEEE Conf on Computer Communications Workshops (INFOCOM 2019). Piscataway, NJ: IEEE, 2019: 680687[9]Lan J, Liu X, Li B, et al. DarknetSec: A novel selfattentive deep learning method for darknet traffic classification and application identification[J]. Computers & Security, 2022, 116: 102663[10]He L, Wang L, Cheng K, et al. FlowMFD: Characterisation and classification of Tor traffic using MFD chromatographic features and spatialtemporal modelling[J]. IET Information Security, 2023, 17(4): 598615[11]黄岩. 基于残差网络的Tor匿名流量识别[D]. 银川: 宁夏大学, 2023[12]Qin J, Liu G, Duan K. A new imbalanced encrypted traffic classification model based on cbam and reweighted loss function[J]. Applied Sciences, 2022, 12(19): 9631[13]王曦锐, 芦天亮, 张建岭, 等. 基于加权Stacking集成学习的Tor匿名流量识别方法[J]. 信息网络安全, 2021, 21(12): 118125[14]Yao H, Liu C, Zhang P, et al. Identification of encrypted traffic through attention mechanism based long short term memory[J]. IEEE Trans on Big Data, 2019, 8(1): 241252[15]Swana E F, Doorsamy W, Bokoro P. Tomek link and SMOTE approaches for machine fault classification with an imbalanced dataset[J]. Sensors, 2022, 22(9): 3246[16]尹梓诺, 马海龙, 胡涛. 基于联合注意力机制和一维卷积神经网络双向长短期记忆网络模型的流量异常检测方法[J]. 电子与信息学报, 2023, 45(10): 37193728[17]张天月, 陈伟, 刘宇啸. 基于多尺度时空残差网络的入侵检测方法[J]. 信息安全研究, 2023, 9(11): 10451053[18]肖斌, 甘昀, 汪敏, 等. 基于端口注意力与通道空间注意力的网络异常流量检测[J]. 计算机应用, 2024, 44(4): 10271034[19]He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 770778[20]Shaikh A A S, Bhargavi M S, Kumar C P. An optimised Darknet traffic detection system using modified locally connected CNNBiLSTM network[J]. International Journal of Ad Hoc and Ubiquitous Computing, 2023, 43(2): 8796[21]Lim H S, Lee S J. Classification of Tor network traffic using CNN[J]. Convergence Security Journal, 2021, 21(3): 3138[22]Singh D, Shukla A, Sajwan M. Deep transfer learning framework for the identification of malicious activities to combat cyberattack[J]. Future Generation Computer Systems, 2021, 125: 687697
|