[1]Evstatiev B I, GabrovskaEvstatieva K G. A review on the methods for big data analysis in agriculture[C] Proc of IOP Conf Series: Materials Science and Engineering. London: IOP, 2021: 012053[2]Seh A H, Zarour M, Alenezi M, et al. Healthcare data breaches: Insights and implications[J]. Healthcare, 2020, 8(2): 133[3]Farayola O A, Olorunfemi O L, Shoetan P O. Data privacy and security in it: A review of techniques and challenges[J]. Computer Science & IT Research Journal, 2024, 5(3): 606615[4]Wang T, Zhang X, Feng J, et al. A comprehensive survey on local differential privacy toward data statistics and analysis[J]. Sensors, 2020, 20(24): 7030[5]Cheu A, Smith A, Ullman J, et al. Distributed differential privacy via shuffling[C] Proc of the 38th Annual Int Conf on the Theory and Applications of Cryptographic Techniques. Berlin: Springer, 2019: 375403[6]Xue K, Li S, Hong J, et al. Twocloud secure database for numericrelated SQL range queries with privacy preserving[J]. IEEE Trans on Information Forensics & Security, 2017, 12(7): 15961608[7]Liang J, Qin Z, Xiao S, et al. Privacypreserving range query over multisource electronic health records in public clouds[J]. Journal of Parallel and Distributed Computing, 2020, 135(6): 127139[8]Hu P, Wang Y, Li Q, et al. Efficient location privacypreserving range query scheme for vehicle sensing systems[J]. Journal of Systems Architecture, 2020, 106(2): 101714[9]Kulkarni T. Answering range queries under local differential privacy[C] Proc of the 2019 Int Conf on Management of Data. New York: ACM, 2019: 18321834[10]Wang T, Ding B, Zhou J, et al. Answering multidimensional analytical queries under local differential privacy[C] Proc of the 2019 Int Conf on Management of Data. New York: ACM, 2019: 159176[11]Du L, Zhang Z, Bai S, et al. AHEAD: Adaptive hierarchical decomposition for range query under local differential privacy[C] Proc of the 2021 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2021: 12661288[12]Kairouz P, Bonawitz K, Ramage D. Discrete distribution estimation under local privacy[C] Proc of Int Conf on Machine Learning. New York: PMLR, 2016: 24362444[13]Wang T, Blocki J, Li N, et al. Locally differentially private protocols for frequency estimation[C] Proc of the 26th USENIX Security Symposium. Berkeley, CA: USENIX Association, 2017: 729745[14]Bittau A, Erlingsson , Maniatis P, et al. Prochlo: Strong privacy for analytics in the crowd[C] Proc of the 26th Symp on Operating Systems Principles. New York: ACM, 2017: 441459[15]Erlingsson , Feldman V, Mironov I, et al. Amplification by shuffling: From local to central differential privacy via anonymity[C] Proc of the 30th Annual ACMSIAM Symp on Discrete Algorithms. New York: ACM, 2019: 24682479[16]Cheu A, Smith A, Ullman J, et al. Distributed differential privacy via shuffling[C] Proc of Advances in CryptologyEUROCRYPT. Berlin: Springer, 2019: 375403 |