[1]OWASP. OWASP top ten[EBOL]. [20240513]. https:owasp.orgwwwprojecttopten[2]Chowdhary A, Jha K, Zhao Ming. Generative adversarial network (GAN)based autonomous penetration testing for Web applications[J]. Sensors, 2023, 23(18): 8014.18014.18[3]Adem T. A novel architecture for webbased attack detection using convolutional neural network[J]. Computers & Security, 2021, 100(1): 102096.1102096.12[4]李志平. 基于机器学习的跨站脚本攻击检测模型研究[D]. 天津: 中国民航大学, 2020[5]何禹峰. 基于强化学习的XSS对抗攻击模型研究[D]. 上海: 东华大学, 2023[6]郑松奕, 陈国良, 张裕祥, 等. 基于CNNLSTMattention的XSS攻击检测方法[J]. 信息技术与信息化, 2024 (5): 5053[7]李荣, 李乐言. 基于对抗样本的流量特征隐藏方法[J]. 信息安全研究, 2024, 10(12): 11371143[8]Stency V S, Mohanasundaram N. A study on XSS attacks: Intelligent detection methods[J]. Journal of Physics: Conference Series, 2021, 1767(1): 012047.1012047.9[9]Wang Qiuhua,Yang Hui, Wu Guohua, et al. Blackbox adversarial attacks on XSS attack detection model[J]. Computers & Security, 2022, 113: 102554.1102554.11[10]Mock J W, Munnahallipatna S S. A comparison of PPO, TD3 and SAC reinforcement algorithms for quadruped walking gait generation[J]. Journal of Intelligent Learning Systems and Applications, 2023, 15(1): 3656[11]Li Chen, Cone Tang, He Junjiang, et al. XSS adversarial example attacks based on deep reinforcement learning[J]. Computers & Security, 2022, 120(8): 102831.1102831.13[12]Fang Yong, Huang Cheng, Xu Yijia, et al. RLXSS: Optimizing XSS detection model to defend against adversarial attacks based on reinforcement learning[J]. Future Internet, 2019, 11(8): 177177[13]Song Xuyan, Zhang Ruxian, Dong Qingqing, et al. Greybox fuzzing based on reinforcement learning for XSS vulnerabilities[J]. Applied Sciences, 2023, 13(4): 2482.12482.18[14]Hu Tianle, Xu Chonghai, Zhang Shenwen, et al. Crosssite scripting detection with twochannel feature fusion embedded in selfattention mechanism[J]. Computers & Security, 2023, 124: 102990.1102990.13[15]Arulkumaran K, Deisenroth M, Brundage M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 2638[16]Harish K J, Godwin P J. Cross site scripting (XSS) vulnerability detection using machine learning and statistical analysis[C] Proc of 2023 Int Conf on Computer Communication and Informatics (ICCCI). Piscataway, NJ: IEEE, 2023: 19[17]杜昕祺. 多智能体强化学习的样本效率优化方法研究[D]. 长春: 吉林大学, 2024[18]长亭科技. XSSChop[EBOL]. [20240610]. https:xsschop.chaitin.cndemo[19]云磐·云安全中心. 安全狗[EBOL]. [20240610]. https:www.safedog.cn |