Journal of Information Security Reserach ›› 2025, Vol. 11 ›› Issue (9): 814-.

Previous Articles     Next Articles

Double Differential Privacy Protection Algorithm Based on BP Neural Network

Zhang Xiaoqin1, Ju Xiaoying2, Mi Zichuan1, and Li Shiyi3   

  1. 1(School of Statistics, Shanxi University of Finance & Economics, Taiyuan 030006)
    2(School of Mathematics and Statistics, Shanxi University, Taiyuan 030006)
    3(School of Computer and Information Technology, Shanxi University, Taiyuan 030006)
  • Online:2025-09-30 Published:2025-09-30

基于BP神经网络的双重差分隐私保护算法

张晓琴1琚晓颖2米子川1李师毅3   

  1. 1(山西财经大学统计学院太原030006)
    2(山西大学数学与统计学院太原030006)
    3(山西大学计算机与信息技术学院太原030006)
  • 通讯作者: 米子川 博士,教授.主要研究方向为应用统计学、经济统计、抽样调查、社会网络与大数据分析. mizc@sxufe.edu.cn
  • 作者简介:张晓琴 博士,教授.主要研究方向为统计机器学习、社会复杂网络. zhangxiaoqin@sxufe.edu.cn 琚晓颖 硕士研究生.主要研究方向为统计机器学习. 1023499646@qq.com 米子川 博士,教授.主要研究方向为应用统计学、经济统计、抽样调查、社会网络与大数据分析. mizc@sxufe.edu.cn 李师毅 博士研究生.主要研究方向为数据挖掘与机器学习. 171215758@qq.com

Abstract: With the continuous development of data mining, the information hidden within data can bring immense value across various fields, but there is always the risk of user sensitive information leakage when using the model for prediction. Aiming at the problem of sensitive data leakage in the training process of neural networks, this paper proposed an improved BP neural network algorithm with differential and dual privacy protection, named BPDDP. In this method, the difference privacy theory was introduced in the process of network training, and Gaussian noise conforming to a certain privacy budget was added to the loss function, and Laplace noise was added after the gradient is corrected, so as to achieve privacy protection. Finally, the experiment is compared with the traditional BP neural network. The experimental results show that the BP neural network still has good multiclassification performance under the premise of privacy protection when the added noise scale is small.

Key words: BP neural network, Gaussian mechanism, loss function, Laplace mechanism, double differential privacy

摘要: 随着数据挖掘技术的不断发展,数据中潜藏的信息可以给各个领域带来巨大的价值,但利用模型进行预测时往往存在用户敏感信息泄露的风险.针对神经网络在训练过程中所存在的敏感数据泄露问题,提出了一种具有双重差分隐私保护的BP神经网络改进算法BPDDP.该算法在网络训练过程中引入差分隐私理论,对损失函数添加符合一定隐私预算的高斯噪声,并在对梯度进行修正后添加Laplace噪声,从而实现隐私保护,最后与传统的BP神经网络进行对比实验. 实验结果表明,当添加噪声规模较小时,BP神经网络在保护隐私前提下仍然具有较好的多分类性能.

关键词: BP神经网络, 高斯机制, 损失函数, Laplace机制, 双重差分隐私

CLC Number: