Journal of Information Security Research ›› 2016, Vol. 2 ›› Issue (6): 501-511.
Previous Articles Next Articles
Received:
2016-06-14
Online:
2016-06-15
Published:
2016-06-15
王波
通讯作者:
王波
作者简介:
博士,副教授,主要研究方向为数字图像取证、信息隐藏与信息隐藏分析.
[1]Piva A. An overview on image forensics[J]. ISRN Signal Processing, 2013, 2013: 122[2]Stamm M C, Wu M, Liu K J R. Information forensics: An overview of the first decade[J]. IEEE Access, 2013, 1: 167200[3]Bestagini P, Fontani M, Milani S, et al. An overview of video forensics[J]. APSIPA Trans on Signal and Information Processing, 2012, 1(2): 12291233[4]Media Forensics(MediFor)[EBOL]. 2015[20160411]. https:www.fbo.govindex?s=opportunity&mode=form &id=bfa29e5f04566fbb961cd773a8a8649f&tab=core&_cview=1[5]Chang S F, Hsu J, Ng T T, et al. TrustFoto[EBOL]. University of Columbia, 2006[20160411]. http:www.ee.columbia.edulndvmmtrustfoto[6]Kot A C, Cao Hong. Image and video source class identification[M]. Digital Image Forensics. Berlin: Springer, 2013: 157178[7]孙晓婷, 李叶舟, 牛少彰, 等. 数字照片相机来源认证方法研究[J]. 中国电子商情通信市场, 2013 (6): 100104[8]王波. 利用成像引入特征的数字图像被动盲取证研究[D]. 大连: 大连理工大学, 2010[9]Lyu S, Farid H. How realistic is photorealistic?[J]. IEEE Trans on Signal Processing, 2005, 53(2): 845850[10]Ozparlak L, Avcibas I. Differentiating between images using waveletbased transforms: A comparative study[J]. IEEE Trans on Information Forensics and Security, 2011, 6(4): 14181431[11]Farid H, Bravo M J. Perceptual discrimination of computer generated and photographic faces[J]. Digital Investigation, 2012, 8(3/4): 226235[12]Ng T T, Chang S F, Hsu J, et al. Physicsmotivated features for distinguishing photographic images and computer graphics[C] Proc of the 13th Annual ACM Int Conf on Multimedia. New York: ACM, 2005: 239248[13]Ng T T, Chang S F. An online system for classifying computer graphics images from natural photographs[C] Proc of the Security, Steganography, and Watermarking of Multimedia Contents VIII. San Francisco, CA: SPIE, 2006: 6072116072119[14]Chen Wen, Shi Y Q, Xuan Guorong. Identifying computer graphics using HSV color model and statistical moments of characteristic functions[C] Proc of the IEEE Int Conf on Multimedia and Expo. Piscataway, NJ: IEEE, 2007: 11231126[15]Chang T Y, Tai S C, Lin G S. A passive multipurpose scheme based on periodicity analysis of CFA artifacts for image forensics[J]. Journal of Visual Communication and Image Representation, 2014, 25(6): 12891298[16]Peng Fei, Liu Juan, Long Min. Identification of natural images and computer generated graphics based on hybrid features[J]. International Journal of Digital Crime and Forensics, 2012, 4(1): 116[17]Wang Xiaofeng, Liu Yong, Xu Bingchao, et al. A statistical feature based approach to distinguish PRCG from photographs[J]. Computer Vision and Image Understanding, 2014, 128(11): 8493[18]Peng Fei, Li Jiaoting, Long Min. Identification of natural images and computergenerated graphics based on statistical and textural features[J]. Journal of Forensic Sciences, 2015, 60(2): 435443[19]王学良, 李生红, 金波, 等. 一种用于计算机生成图像与自然图像鉴别的改进方法[J]. 光电子·激光, 2010, 21(5): 783785[20]刘娟. 基于PRNU的自然图像和计算机生成图像来源取证[D]. 长沙: 湖南大学, 2012[21]Gao Shang, Zhang Cong, Wu Chanle, et al. A hybrid feature based method for distinguishing computer graphics and photographic image[G] LNCS 8389: Proc of the Int Workshop on DigitalForensics and Watermarking 2013. Berlin: Springer, 2013: 303313[22]Li Zhaohong, Zhang Zhenzhen, Shi Y Q. Distinguishing computer graphics from photographic images using a multiresolution approach based on local binary patterns[J]. Security and Communication Networks, 2014, 7(11): 21532159[23]Orozco A L S, Corripio J R, Villalba L J G, et al. Image source acquisition identification of mobile devices based on the use of features[J]. Multimedia Tools and Application, 2015: 125[24]Khanna N, Chiu G T C, Allebach J P, et al. Forensic Techniques for classifying scanner, computer generated and digital camera images[C] Proc of the IEEE Int Conf on Acoustics, Speech and Processing. Piscataway, NJ: IEEE, 2008: 16531656[25]San Choi K, Lam E Y, Wong K K Y. Automatic source camera identification using the intrinsic lens radial distortion[J]. Optics Express, 2006, 14(24): 1155111565[26]Popescu A C, Farid H. Exposing digital forgeries in color filter array interpolated images[J]. IEEE Trans on Signal Processing, 2005, 53(10): 39483959[27]Bayram S, Sencarb H T, Memonb N. Classification of digital cameramodels based on demosaicing artifacts[J]. Digital Investigation, 2008, 5(12): 4959[28]Long Yangjing, Huang Yizhen. Image based source camera identification using demosaicking[C] Proc of the IEEE Workshop on Multimedia Signal Processing. Piscataway, NJ: IEEE, 2006: 419424[29]Swaminathan A, Wu Min, Liu K J R. Nonintrusive component forensics of visual sensors using output images[J]. IEEE Trans on Information Forensics and security, 2007, 2(1): 91106[30]王波, 孔祥维, 尤新刚, 等. 利用协方差矩阵检测CFA插值的相机来源鉴别方法[J]. 光电子·激光, 2009, 20(4): 517520[31]Chen Chen, Stamm M C. Camera model identification framework using an ensemble of demosaicing features[C] Proc of the Int Workshop on Information Forensics and Security. Piscataway, NJ: IEEE, 2015: 16[32]Deng Zhonghai, Gijsenij A, Zhang Jingyuan. Source camera identification using autowhite balance approximation[C] Proc of the Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2011: 5764[33]Kharrazi M, Sencar H T, Memon N. Blind source camera identification[C] Proc of the Int Conf on Image Processing. Piscataway, NJ: IEEE, 2004: 709712[34]Goyal K, Panwar R, Khanna N. Evaluation of IQMs effectiveness for cell phone identification using captured videos and images[C] Proc of the Int Conf on Power, Control and Embedded Systems. Piscataway, NJ: IEEE, 2014: 16[35]Meng Fanjie, Kong Xiangwei, You Xingang. A new featurebased method for source camera identification[C] Advances in Digital Forensics IV: Proc of IFIP Int Federation for Information Processing. Berlin: Springer, 2008: 207218[36]Xu Guanshuo, Shi Yunqing, Su Wei. Camera brand and model identification using moments of 1D and 2D characteristic functions[C] Proc of the 16th IEEE Int Conf on Image Processing. Piscataway, NJ: IEEE, 2009: 29172920[37]Razzazi F, Seyedadabi. A robust feature for single image camera identification using local binary patterns[C] Proc of the IEEE Int Symp on Signal Processing and Information Technology. Piscataway, NJ: IEEE, 2014: 462467[38]Thai T H, Cogranne R, Retraint F. Camera model identification based on the heteroscedastic noise model[J]. IEEE Trans on Image Processing, 2014, 23(1): 250263[39]Amerini I, Caldelli R, Crescenzi P, et al. Blind image clustering based on the normalized cuts critertion for camera identification[J]. Signal Processing: Image Communication, 2014, 29(8): 831843[40]Luan Shuhan, Kong Xiangwei, Wang Bo, et al. Silhouette coefficient based approach on cellphone classification for unknown source images[C] Proc of the 2012 IEEE Int Conf on Communications. Piscataway, NJ: IEEE, 2012: 67446747[41]Geradts Z J, Bijhold J, Kief M, et al. Methods for identification of images acquired with digital cameras[C] Proc of the SPIE Conf on Enabling Technologies for Law Enforcement and Security. Boston, MA, USA: SPIE, 2001: 505512[42]Dirik A E, Sencar H T, Memon N. Source camera identification based on sensor dust characteristics[C] Proc of the IEEE Workshop on Signal Processing Applications for Public Security and Forensics. Piscataway, NJ: IEEE, 2007: 16[43]Fridrich J. Sensor Defects in Digital Image Forensic[M]. Berlin: Springer, 2013: 179218[44]Fridrich J. Digital image forensics using sensor noise[J]. IEEE Signal Processing Magazine, 2009, 26(2): 2637[45]Lawgaly A, Khelifi F, Bouridane. A Weighted averagingbased sensor pattern noise estimation for source camera identification[C] Proc of the IEEE Int Conf on Image Processing. Piscataway, NJ: IEEE, 2014: 53575361[46]Tan Yue, Wang Bo, Zhao Meijuan, et al. Patchbased sensor pattern noise for camera source identification[C] Proc of the IEEE China Summit and Int Signal and Information Processing. Piscataway, NJ: IEEE, 2015: 866870[47]Kang Xiangui, Chen Jiansheng, Lin Kerui, et al. A contextadaptive SPN predictor for trustworthy source camera identification[J]. EURASIP Journal on Image and Video Processing, 2014, 2014(1): 111[48]Hu Yongjian, Yu Binghua, Jian Chao. Source camera identification using large components of sensor pattern noise[C] Proc of the 2nd Int Conf on Computer Science and its Applications. Piscataway, NJ: IEEE, 2009: 15[49]Li C T, Li Yue. Digital camera identification using colourdecoupled photo response nonuniformity noise pattern[C] Proc of IEEE Int Symp on Circuits and Systems. Piscataway, NJ: IEEE, 2010: 30523055[50]Goljan M, Fridrich J, Chen Mo. Defending against fingerprintcopy attack in sensorbased camera identification[J]. IEEE Trans on Information Forensics and Security, 2011, 6(1): 227236[51]Lin Xufeng, Li C T. Preprocessing reference sensor pattern noise via spectrum equalization[J]. IEEE Trans on Information Forensics and Security, 2016, 11(1): 126140[52]Lin Xufeng, Li C T. Enhancing sensor pattern noise via filtering distortion removal[J]. IEEE Signal Processing Letters, 2016, 23(3): 381385[53]Chan L H, Law N F, Siu W C. A confidence map and pixelbased weighted correlation for PRNUbased camera identification[J]. Digital Investigation, 2013, 10(3): 215225[54]Li Ruizhe, Yu Guan, Li C T. PCAbased denoising of sensor pattern noise for source camera identification[C] Proc of the IEEE China Summit and Int Signal and Information Processing. Piscataway, NJ: IEEE, 2014: 436440[55]Kang Xiangui, Li Yinxiang, Qu Zhenhua, et al. Enhancing source camera identification performance with a camera reference phase sensor pattern noise[J]. IEEE Trans on Information Forensics and Security, 2012, 7(2): 393402[56]Soobhany, Lam K P, Fletcher P, et al. Mobile camera source identification with SVD[G]LNEE 313: Proc of the Int Joint Conf on Computer Information and Systems Sciences and Engineering. Berlin: Springer, 2015: 123131[57]Chen Mo, Fridrich J, Goljan M, et al. Source digital camcorder identification using sensor photo response nonuniformity[C] Proc of the 9th Conf on Security, Steganography, and Watermarking of Multimedia Contents IX. San Francisco, CA: SPIE, 2007: 65051G65051G12[58]Gou Hongmei, Swaminathan A, Wu Min. Intrinsic sensor noise features for forensic analysis on scanners and scanned images[J]. IEEE Trans on Information Forensics and Security, 2009, 4(3): 476491[59]Huang Yizhen. Can digital image forgery detection be unevadable? A case study: Color filter array interpolation statistical feature recovery[C] Proc of the Visual Communications and Image Processing. San Francisco, CA: SPIE, 2005: 59602W59602W12[60]Kirchner M, Bohme R. Synthesis of color filter array pattern in digital images[C] Proc of the Media Forensics and Security. San Francisco, CA: SPIE, 2009: 72540K72540K14[61]Li C T, Chang C Y, Li Yue. On the Repudiability of Device Identification and Image Integrity Verification Using Sensor Pattern Noise[G] LNCS 45: Proc of the Int Conf on Information Security and Digital Forensics. Berlin: Springer, 2010: 1529[62]杨弘,周治平. 数字图像模式噪声篡改反取证[J]. 计算机工程与应用, 2014, 50(18): 156161[63]Zeng Hui, Jiang Yunwen, Kang Xiangui, et al. Game theoretic analysis of camera source identification[C] Proc of the AsiaPacific Signal and Information Processing Association Annual Summit and Conf. Piscataway, NJ: IEEE, 2013: 19[64]Zeng Hui, Chen Jiansheng, Kang Xiangui, et al. Removing camera fingerprint to disguise photograph source[C] Proc of the IEEE Int Conf on Image Processing. Piscataway, NJ: IEEE, 2015: 16871691[65]Caldelli R, Amerini I, Novi A. An analysis on attacker actions in fingerprintcopy attack in source camera identification[C] Proc of the IEEE Int Workshop on Information Forensics and Security. Piscataway, NJ: IEEE, 2011: 16[66]Rao Quanquan, Luo Weiqi, Li Haodong, et al. Antiforensics of the triangle test by random fingerprintcopy attack[C] Proc of Computational Visual Media Conf. Piscataway, NJ: IEEE, 2013: 16[67]Marra F, Roli F, Cozzolino D, et al. Attacking the triangle test in sensorbased camera identification[C] Proc of the IEEE Int Conf on Image Processing. Piscataway, NJ: IEEE, 2014: 53075311[68]Barni M. A game theoretic approach to source identification with known statistics[C] Proc of the IEEE Int Conf on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2012: 17451748[69]Stamm M C, Lin W S, Liu K J R. Forensics vs. antiforensics: A decision and game theoretic framework[C] Proc of the IEEE Int Conf on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2012: 17491752[70]Wang Bo, Tan Yue, Zhao Meijuan, et al. Classifier combination based source identification for cell phone images[J]. KSII Trans on Internet and Information Systems, 2015, 9(12): 50875102[71]Costa F d O, Silva E, Eckmann M, et al. Open set source camera attribution and device linking[J]. Pattern Recognition Letters, 2014, 39(1): 92101[72]Huang Yonggang, Zhang Jun, Huang Heyan. Camera model identification with unknown models[J]. IEEE Trans on Information Forensics and Security, 2015, 10(12): 26922704[73]王波, 孔祥维, 尤新刚, 等. 基于协方差矩阵的CFA插值盲检测方法[J]. 电子与信息学报, 2009, 31(5): 11751179[74]Miroslav Goljan, Mo Chen, Pedro Comesana, et al. Effect of compression on sensorfingerprint based camera identification[C] Proc of the Media Watermarking, Security, and Forensics. San Francisco, CA: SPIE, 2016[75]Goljan M, Fridrich J. Camera identification from cropped and scaled images[C] Proc of the Security, Forensics, Steganography, and Watermarking of Multimedia Contents X. San Francisco, CA: SPIE, 2008: 68190E[76]Goljan M, Fridrich J. Sensor fingerprint digests for fast camera identification from geometrically distorted images[C] Proc of the Media Watermarking, Security, and Forensics 2013. San Francisco, CA: SPIE, 2013: 866508[77]Goljan M, Fridrich J, Luká J. Camera identification from printed images[C] Proc of the Security, Forensics, Steganography, and Watermarking of Multimedia Contents X. San Francisco, CA: SPIE, 2008: 68190I68190I12[78]Goljan M, Fridrich J, Filler T. Large scale test of sensor fingerprint camera identification[C] Proc of the Media Forensics and Security XI. San Francisco, CA: SPIE, 2009: 72540172540112[79]谭跃, 王波, 赵美娟. 有限样本条件下的相机来源鉴别方法[C] 第十二届全国信息隐藏暨多媒体信息安全学术大会论文集, 2015: 448454[80]Tan Yue, Wang Bo, Li Ming, et al. Camera source identification with limited labeled training set[G] LNCS 9569: Proc of the 14th Int Workshop. Berlin: Springer, 2016: 1827 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||