[1] Device Fingerprint [EB/OL]. [2019-02-15]. https://en. wikipedia. org/wiki/Device_fingerprint
[2] Baldini G, Steri G. A survey of techniques for the identification of mobile phones using the physical fingerprints of the built-in components [J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1761-1789
[3] Suski II W C, Temple M A, Mendenhall M J, et al. Using spectral fingerprints to improve wireless network security [C] //Proc of IEEE Global Telecommunications (GLOBECOM). Piscataway, NJ: IEEE, 2008: 1-5
[4] Rehman S U, Sowerby K, Coghill C. Analysis of receiver front end on the performance of rf fingerprinting [C] //Proc of IEEE 23rd Int Symp on Personal, Indoor and Mobile Radio Communications (PIMRC). Piscataway, NJ: IEEE, 2012: 2494-2499
[5] Xu Q, Zheng R, Saad W, et al. Device fingerprinting in wireless networks: Challenges and opportunities [J]. IEEE Communications Surveys & Tutorials, 2015, 18(1): 94-104
[6] Reising D R, Temple M A, Mendenhall M J. Improved wireless security for GMSK-based devices using RF fingerprinting [J]. Int Journal of Electronic Security and Digital Forensics, 2010, 3(1): 41-59
[7] Wang W, Sun Z, Piao S, et al. Wireless physical-layer identification: Modeling and validation [J]. IEEE Trans on Information Forensics and Security, 2016, 11(9): 2091-2106
[8] Dubendorfer C K, Ramsey B W, Temple M A. An RF-DNA verification process for ZigBee networks [C] //Proc of IEEE Military Communications Conference (MILCOM). Piscataway, NJ: IEEE, 2012: 1-6
[9] Reising D R, Temple M A, Jackson J A. Authorized and rogue device discrimination using dimensionally reduced RF-DNA fingerprints [J]. IEEE Trans on Information Forensics and Security, 2015, 10(6): 1180-1192
[10] Patel H, Temple M A, Ramsey B W. Comparison of High-end and Low-end Receivers for RF-DNA Fingerprinting [C] //Proc of IEEE Military Communications Conference (MILCOM). Piscataway, NJ: IEEE, 2014: 24-29
[11] Klein R W, Temple M A, Mendenhall M J. Application of wavelet-based RF fingerprinting to enhance wireless network security [J]. Journal of Communications and Networks, 2009, 11(6): 544-555
[12] Dolatshahi S, Polak A, Goeckel D L. Identification of wireless users via power amplifier imperfections [C] //Proc of the 44th Record Asilomar Conf on Signals, Systems and Computers (ASILOMAR). Piscataway, NJ: IEEE, 2010: 1553-1557
[13] Rehman S U, Sowerby K W, Coghill C. Radio-frequency fingerprinting for mitigating primary user emulation attack in low-end cognitive radios [J]. IET Communications, 2014, 8(8): 1274-1284
[14] Rehman S U, Sowerby K W, Coghill C. Radio-frequency fingerprinting for mitigating primary user emulation attack in low-end cognitive radios [J]. IET Communications, 2014, 8(8): 1274-1284
[15] Kohno T, Broido A, Claffy K C. Remote physical device fingerprinting [J]. IEEE Trans on Dependable and Secure Computing, 2005, 2(2): 93-108
[16] Radhakrishnan S V, Uluagac A S, Beyah R. GTID: A technique for physical device and device type fingerprinting [J]. IEEE Trans on Dependable and Secure Computing, 2014, 12(5): 519-532
[17] Cristea M, Groza B. Fingerprinting smartphones remotely via ICMP timestamps [J]. IEEE Communications Letters, 2013, 17(6): 1081-1083
[18] Mo F, Lu Y H, Zhang J L, et al. A support vector machine for identification of monitors based on their unintended electromagnetic emanation [J]. Progress in Electromagnetics Research, 2013, 30: 211-224
[19] Polak A C, Goeckel D L. Wireless device identification based on RF oscillator imperfections [J]. IEEE Trans on Information Forensics and Security, 2015, 10(12): 2492-2501
[20] Choi K S, Lam E Y, Wong K K Y. Source camera identification using footprints from lens aberration [C] //Proc of Int Society for Optics and Photonics. Bellingham 2006, 6069: 172-179
[21] Dirik A E, Sencar H T, Memon N. Digital single lens reflex camera identification from traces of sensor dust [J]. IEEE Trans on Information Forensics and Security, 2008, 3(3): 539-552
[22] Color Filter Array [EB/OL]. [2019-02-20]. https://en. wikipedia. org/wiki/Color_filter_array
[23] Lukáš J, Fridrich J, Goljan M. Digital camera identification from sensor pattern noise [J]. IEEE Trans on Information Forensics and Security, 2006, 1(2): 205-214
[24] Fridrich J. Digital image forensics [J]. IEEE Signal Processing Magazine, 2009, 26(2): 26-37
[25] Xu G, Shi Y Q, Su W. Camera brand and model identification using moments of 1-D and 2-D characteristic functions [C] //Proc of the 16th Int Conf on Image Processing (ICIP). Piscataway, NJ: IEEE, 2009: 2917-2920
[26] Chen S, Pande A, Zeng K, et al. Live video forensics: Source identification in lossy wireless networks [J]. IEEE Trans on Information Forensics and Security, 2014, 10(1): 28-39
[27] Freire-Obregón D, Narducci F, Barra S, et al. Deep learning for source camera identification on mobile devices [J]. Pattern Recognition Letters, 2018
[28] Bojinov H, Michalevsky Y, Nakibly G, et al. Mobile device identification via sensor fingerprinting [J]. arXiv preprint arXiv:1408.1416, 2014. https://arxiv.org/pdf/1408.1416.pdf
[29] Kraetzer C, Oermann A, Dittmann J, et al. Digital audio forensics: a first practical evaluation on microphone and environment classification [C] //Proc of the 9th workshop on Multimedia & security. New York: ACM, 2007: 63-74
[30] Hanilci C, Ertas F, Ertas T, et al. Recognition of brand and models of cell-phones from recorded speech signals [J]. IEEE Trans on Information Forensics and Security, 2011, 7(2): 625-634
[31] Kotropoulos C L. Source phone identification using sketches of features [J]. IET biometrics, 2014, 3(2): 75-83
[32] Zou L, He Q, Wu J. Source cell phone verification from speech recordings using sparse representation [J]. Digital Signal Processing, 2017, 62: 125-136
[33] Das A, Borisov N, Caesar M. Tracking Mobile Web Users Through Motion Sensors: Attacks and Defenses [C] // The Network and Distributed System Security Symp (NDSS). Reston, VA: IETF, 2016
[34] STMicroelectronics [EB/OL]. [2019-02-21]. http://www. st. com/web/en/home. html
[35] Invensense [EB/OL]. [2019-02-21]. http://www. invensense. com/
[36] Le Grand E, Thrun S. 3-axis magnetic field mapping and fusion for indoor localization [C] //Proc of Int Conf on Multi sensor Fusion and Integration for Intelligent Systems (MFI). Piscataway, NJ: IEEE, 2012: 358-364
[37] Jin R, Shi L, Zeng K, et al. Magpairing: Pairing smartphones in close proximity using magnetometers [J]. IEEE Trans on information forensics and security, 2015, 11(6): 1306-1320
[38] Jiang W, Ferreira D, Ylioja J, et al. Pulse: low bitrate wireless magnetic communication for smartphones [C] //Proc of the Int Joint Conf on Pervasive and Ubiquitous Computing. New York: ACM, 2014: 261-265
[39] Baldini G, Steri G, Giuliani R, et al. Mobile phone identification through the built-in magnetometers [J]. arXiv preprint arXiv:1701.07676, 2017. https://arxiv.org/pdf/1701.07676v1.pdf
[40] Mayer J R, Mitchell J C. Third-party web tracking: Policy and technology [C] //Proc of Symp on security and privacy. Piscataway, NJ: IEEE, 2012: 413-427
[41] Egele M, Kruegel C, Kirda E, et al. PiOS: Detecting Privacy Leaks in iOS Applications [C] // The Network and Distributed System Security Symp (NDSS). Reston, VA: IETF, 2011:177-183
[42] Apple, Worldwide Developer’s Conference (WWDC) Keynote 2014 [EB/OL]. [2019-02-23]. http://devstreaming. apple.com/videos/wwdc/2014/101xx36lr6smzjo/101/101_hd.mov
[43] Kurtz A, Gascon H, Becker T, et al. Fingerprinting mobile devices using personalized configurations [J]. Proc on Privacy Enhancing Technologies (PETS), 2016, 2016(1): 4-19
[44] Laperdrix P, Rudametkin W, Baudry B. Beauty and the beast: Diverting modern web browsers to build unique browser fingerprints [C] //Proc of Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2016: 878-894
[45] Kristol D M, Montulli L. HTTP state management mechanism [J]. 2000
[46] Eckersley P. How unique is your web browser? [C] //Proc of Int Symp on Privacy Enhancing Technologies (PETS). Berlin, Heidelberg: Springer, 2010: 1-18
[47] Mowery K, Shacham H. Pixel perfect: Fingerprinting canvas in HTML5 [J]. Proc of W2SP, 2012: 1-12
[48] Acar G, Eubank C, Englehardt S, et al. The web never forgets: Persistent tracking mechanisms in the wild [C] //Proc of the SIGSAC Conf on Computer and Communications Security. New York: ACM, 2014: 674-689
[49] WebGL, Mozilla Developer Network. (2015-11-23)[2019-02-23]. https://developer.mozilla.org/enUS/docs/Web/API/WebGL API
[50] Vastel A, Laperdrix P, Rudametkin W, et al. FP-STALKER: Tracking browser fingerprint evolutions [C] //Proc of Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2018: 728-741
[51] Starov O, Nikiforakis N. Xhound: Quantifying the fingerprintability of browser extensions [C] //Proc of Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2017: 941-956
[52] Fulcher B D, Jones N S. Highly comparative feature-based time-series classification [J]. IEEE Trans on Knowledge and Data Engineering, 2014, 26(12): 3026-3037
[53] Mendenhall M J, Merényi E. Relevance-based feature extraction for hyperspectral images [J]. IEEE Trans on Neural Networks, 2008, 19(4): 658-672
[54] Yuan Y, Huang Z, Wu H, et al. Specific emitter identification based on Hilbert–Huang transform-based time–frequency–energy distribution features [J]. IET Communications, 2014, 8(13): 2404-2412
[55] MIRtoolbox [EB/OL]. (2015-02-15)[2019-02-24]. https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
[56] LibXtract Documentation [EB/OL]. (2014-05-15)[2019-02-24]. http://libxtract. sourceforge. net/
[57] Kotsiantis S B, Zaharakis I, Pintelas P. Supervised machine learning: A review of classification techniques [J]. Emerging artificial intelligence applications in computer engineering, 2007, 160: 3-24
[58] Das A, Borisov N, Chou E. Every move you make: Exploring practical issues in smartphone motion sensor fingerprinting and countermeasures [J]. Proc on Privacy Enhancing Technologies (PETS), 2018, 2018(1): 88-108
[59] Khanna V K. Remote fingerprinting of mobile phones [J]. IEEE Wireless Communications, 2015, 22(6): 106-113
[60] Anand S A, Saxena N. Speechless: Analyzing the threat to speech privacy from smartphone motion sensors [C] //Proc of Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2018: 1000-1017
[61] Michalevsky Y, Boneh D, Nakibly G. Gyrophone: Recognizing speech from gyroscope signals [C] //Proc of the 23rd USENIX Security Symp. Berkeley, CA, USENIX, 2014: 1053-1067
[62] FaizKhademi A, Zulkernine M, Weldemariam K. FPGuard: Detection and prevention of browser fingerprinting [C] //Proc of Annual Conf on Data and Applications Security and Privacy (IFIP). Cham, Springer, 2015: 293-308
[63] Vastel A, Laperdrix P, Rudametkin W, et al. FP-Scanner: the privacy implications of browser fingerprint inconsistencies [C] //Proc of the 27th USENIX Security Symp. Berkeley, CA, USENIX, 2018: 135-150
|