Journal of Information Security Research ›› 2019, Vol. 5 ›› Issue (11): 1000-1007.

Previous Articles     Next Articles

AI Security—Research and Application on Adversarial Example

  

  • Received:2019-11-08 Online:2019-11-15 Published:2019-11-20

AI安全——对抗样本技术综述与应用

陈岳峰,毛潇锋,李裕宏,何源,薛晖   

  1. 阿里巴巴(中国)有限公司
  • 通讯作者: 陈岳峰
  • 作者简介:陈岳峰 硕士,工程师. 主要研究方向为计算机视觉、 机器学习、对抗样本生成与模型防御等. yuefeng.chenyf@alibaba-inc.com 毛潇锋 硕士,工程师. 主要研究方向为计算机视觉、 图像分析、机器学习. mxf164419@alibaba-inc.com 李裕宏 博士,工程师. 主要研究方向为机器学习、 数据挖掘和高性能计算. daniel.lyh@alibaba-inc.com 何 源 博士,工程师. 主要研究方向为计算机视觉、机器学习和AI安全技术. heyuan.hy@alibaba-inc.com 薛 晖 博士,工程师. 主要研究方向为计算机视觉、机器学习和AI安全技术. hui.xueh@alibaba-inc.com

Abstract: With the rapid development of AI (artificial intelligence), the number of AI systems and applications grows explosively. AI has been closely linked to numerous people and brings great convenience to their life. Meanwhile, AI also leads to big challenges in the cyber security area. Some malicious fraudsters take advantage of AI to attack internet systems especially in the field of captcha generation. The antiknowledge map captcha based on the adversarial example technology is proposed, which fused the natural language processing technology and adversarial example generation technology, and thus increase the robustness to attacks and safeguard the security environment of internet.

Key words: artificial intelligence, adversarial example, AI security, captcha generation, robustness

摘要: 随着人工智能技术的飞速发展,基于人工智能的系统和应用呈现了爆发式增长. 人工智能已经和人类的生活息息相关,给人们的生活带来极大的便利. 同时,人工智能技术也对网络的安全问题带来了很大的挑战,黑灰产利用人工智能技术对互联网上的系统进行破解(尤其是在验证码识别领域).提出了基于对抗样本技术的对抗知识图谱验证码,融合了自然语言处理问答技术与对抗样本生成技术,因此提升了应对灰黑产攻击的鲁棒性,保障了互联网的安全环境.

关键词: 人工智能, 对抗样本, AI安全, 验证码识别, 鲁棒性