[1] Parkhi O M, Vedaldi A, Zisserman A. Deep face recognition[C]//bmvc. 2015, 1(3): 6
[2] Wang M, Deng W. Deep face recognition: A survey[J]. arXiv preprint arXiv:1804.06655, 2018
[3] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014
[4] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778
[5] Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500
[6] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708
[7] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017
[8] Liu W, Wen Y, Yu Z, et al. Large-margin softmax loss for convolutional neural networks[C]//ICML. 2016, 2(3): 7
[9] Liu W, Wen Y, Yu Z, et al. Sphereface: Deep hypersphere embedding for face recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 212-220
[10] Deng J, Guo J, Xue N, et al. Arcface: Additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 4690-4699
[11] Wang H, Wang Y, Zhou Z, et al. Cosface: Large margin cosine loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 5265-5274
[12] Hoffer E, Ailon N. Deep metric learning using triplet network[C]//International Workshop on Similarity-Based Pattern Recognition. Springer, Cham, 2015: 84-92
[13] Chen W, Chen X, Zhang J, et al. Beyond triplet loss: a deep quadruplet network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 403-412
[14] Ge W. Deep metric learning with hierarchical triplet loss[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 269-285
[15] Dowson D C, Landau B V. The Fréchet distance between multivariate normal distributions[J]. Journal of multivariate analysis, 1982, 12(3): 450-455
[16] Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database[C]//2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009: 248-255
[17] Lin T Y, Maire M, Belongie S, et al. Microsoft coco: Common objects in context[C]//European conference on computer vision. Springer, Cham, 2014: 740-755
[18] Huang G B, Mattar M, Berg T, et al. Labeled faces in the wild: A database forstudying face recognition in unconstrained environments[C]. 2008
|