[1] 360 Security Response Center. Android malware report in 2019[OL]. (2020-03-03)[2020-05-11]. https://cert.360.cn/report/detail?id=0d66c8ba239680d6674f2dba9f2be5f7 2020,3,3
[2] McLaughlin N, Martinez del Rincon J, Kang B J, et al. Deep android malware detection[C]//Proc of the 7th ACM on Conf on Data and Application Security and Privacy. New York:ACM,2017: 301-308
[3] 高杨晨,方勇,刘亮 等. 基于卷积神经网络的Android恶意软件检测技术研究 [J]. 四川大学学报: 自然科学版, 2020, 57: 673-680
[4] Sanz B, Santos I, Laorden C, et al. MAMA: Manifest analysis for malware detection in android[J]. Cybernetics and Systems, 2013, 44(6/7): 469-488
[5] Fang Y, Gao Y, Jing F, et al. Android malware familial classification based on DEX file section features[J]. IEEE Access, 2020, 8: 10614-10627
[6] Sarma B P, Li N, Gates C, et al. Android permissions: A perspective combining risks and benefits[C]//Proc of the 17th ACM Symp on Access Control Models and Technologies. New York:ACM,2012: 13-22
[7] Liang S, Du X. Permission-combination-based scheme for android mobile malware detection[C]//Proc of IEEE Int Conf on Communications (ICC).Piscataway, NJ: IEEE, 2014: 2301-2306
[8] Barrera D, Kayacik H G, Van Oorschot P C, et al. A methodology for empirical analysis of permission-based security models and its application to android[C]//Proc of the 17th ACM Conf on Computer and Communications Security. New York: ACM, 2010: 73-84
[9] Enck W, Gilbert P, Han S, et al. TaintDroid: An information-flow tracking system for realtime privacy monitoring on smartphones[J]. ACM Transactions on Computer Systems (TOCS), 2014, 32(2): 5
[10] Kapratwar A, Di Troia F, Stamp M. Static and dynamic analysis of android malware[C]//Proc of ICISSP. 2017: 653-662
[11] Singh L, Hofmann M. Dynamic behavior analysis of android applications for malware detection[C]//Proc of Int Conf on Intelligent Communication and Computational Techniques (ICCT). Piscataway, NJ:IEEE, 2017: 1-7
[12] Zhou Y, Jiang X. Dissecting android malware: Characterization and evolution[C]//Proc of IEEE Symp on Security and Privacy. Piscataway, NJ: IEEE, 2012: 95-109
[13] Peng H, Gates C, Sarma B, et al. Using probabilistic generative models for ranking risks of android apps[C]//Proc of ACM Conf on Computer and Communications Security. New York: ACM, 2012: 241-252
[14] 李永锋. 基于敏感API数据依赖的Android恶意软件检测研究[D].南京:南京大学,2016
[15] 黄心依,曾凡平.基于多重对应分析的Android应用安全等级评估[J].电子技术,2016,45(8):72-78
[16] Li L, Bissyandé T F, Papadakis M, et al. Static analysis of android apps: A systematic literature review[J]. Information and Software Technology, 2017, 88: 67-95
[17] Feng Y, Anand S, Dillig I, et al. Apposcopy: Semantics-based detection of android malware through static analysis[C]//Proc of the 22nd ACM SIGSOFT Int Symp on Foundations of Software Engineering. New York: ACM, 2014: 576-587
[18] Bhatia T, Kaushal R. Malware detection in android based on dynamic analysis[C]//Proc of Int Conf on Cyber Security And Protection Of Digital Services (Cyber Security).Piscataway, NJ: IEEE, 2017: 1-6
[19] Kakisim A G, Nar M, Carkaci N, et al. Analysis and evaluation of dynamic feature-based malware detection methods[C]//Proc of Int Conf on Security for Information Technology and Communications. Cham:Springer, 2018: 247-258
[20] Damodaran A, Di Troia F, Visaggio C A, et al. A comparison of static, dynamic, and hybrid analysis for malware detection[J]. Journal of Computer Virology and Hacking Techniques, 2017, 13(1): 1-12
[21] Lowd D, Domingos P. Naive Bayes models for probability estimation[C]//Proc of the 22nd Int Conf on Machine Learning. 2005: 529-536
[22] 刘庆和,梁正友.一种基于信息增益的特征优化选择方法[J].计算机工程与应用,2011,47(12):130-132
|