[1] 杨溢, 郭晗, 王轶骏, 等. 基于 Tor 的暗网空间资源探测[J]. 通信技术, 2017, 50(10): 2304-2309
[2] Deliu I, Leichter C, Franke K. Extracting cyber threat intelligence from hacker forums: Support vector machines versus convolutional neural networks [C] //Proc of the 2017 IEEE Int Conf on Big Data. Piscataway, NJ: IEEE, 2017: 3648-3656
[3] 黄莉峥, 刘嘉勇, 郑荣锋, 等. 一种基于暗网的威胁情报主动获取框架[J]. 信息安全研究, 2020, 6(2): 131-138
[4] Nunes E, Diab A, Gunn A, et al. Darknet and deepnet mining for proactive cybersecurity threat intelligence [C] //Proc of the 2016 IEEE Conf on Intelligence and Security Informatics (ISI). Piscataway, NJ: IEEE, 2016: 7-12
[5] Han C, Shimamura J, Takahashi T, et al. Real-Time Detection of Malware Activities by Analyzing Darknet Traffic Using Graphical Lasso [C] //Proc of the 18th IEEE Int Conf On Trust, Security And Privacy In Computing And Communications/13th IEEE Int Conf On Big Data Science And Engineering (TrustCom/BigDataSE). Piscataway, NJ: IEEE, 2019: 144-151
[6] Riaz K. Rule-based named entity recognition in Urdu [C] //Proc of the 2010 Named Entities Workshop. Stroudsburg, PA: ACL, 2010: 126-135
[7] Gabbard R, DeYoung J, Lignos C, et al. Combining rule-based and statistical mechanisms for low-resource named entity recognition [J]. Machine Translation, 2018, 32(1/2): 31-43
[8] 谢腾, 杨俊安, 刘辉. 基于 BERT-BiLSTM-CRF 模型的中文实体识别[J]. 计算机系统应用, 2020, 29(7): 48-55
[9] 彭嘉毅, 方勇, 黄诚, 等. 基于深度主动学习的信息安全领域命名实体识别研究[J]. 四川大学学报:自然科学版, 2019, 56(3): 457-462
[10] Zhang Dongwen, Xu Hua, Su Zengcai, et al. Chinese comments sentiment classification based on word2vec and SVMperf [J]. Expert Systems with Applications, 2015, 42(4): 1857-1863
[11] Von Däniken P, Cieliebak M. Transfer learning and sentence level features for named entity recognition on tweets [C] //Proc of the 3rd Workshop on Noisy User-generated Text (W-NUT). Stroudsburg, PA: ACL, 2017: 166-171
[12] Wei Hao, Gao Mingyuan, Zhou Ai, et al. Named entity recognition from biomedical texts using a fusion attention-based BiLSTM-CRF [J]. IEEE Access, 2019, 7: 73627-73636
[13] Liu Xiaojun, Yang Ning, Jiang Yu, et al. A parallel computing-based deep attention model for named entity recognition [J]. The Journal of Supercomputing, 2020, 76(2): 814-830
[14] Poostchi H, Borzeshi E Z, Piccardi M. Bilstm-crf for persian named-entity recognition armanpersonercorpus: The first entity-annotated persian dataset [C] //Proc of the 11th Int Conf on Language Resources and Evaluation (LREC 2018). 2018
[15] Branwen G, Christin N, Décary-Hétu D, et al. Dark net market archives: 2011–2015 [OL]. (2015-07-12)[2019-08-15]. https://www.gwern.net/DNM-archives.
[16] Na S H, Kim H, Min J, et al. Improving LSTM CRFs using character-based compositions for Korean named entity recognition [J]. Computer Speech & Language, 2019, 54: 106-121
|