Demchenko Y, Laat C D, Membrey P. Defining architecture components of the big data ecosystem[C]//Proc of the 2014 Int Conf on Collaboration Technologies & Systems. Piscataway, NJ: IEEE, 2014: 104-112
[2] Stonebraker M, Cetintemel U, Zdonik S. The 8 requirements of real-time stream processing[J]. ACM SIGMOD Record, 2005, 34(4): 42-47
[3] Dua S, Du X. Data Mining and Machine Learning in Cybersecurity[M]. USA: CRC press, 2016
[4] Li Jianhua. Cyber security meets artificial intelligence: A survey[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19: 1462-1474
[5] Ten C W, Hong J, Liu C C. Anomaly Detection for Cybersecurity of the Substations[J]. IEEE Trans on Smart Grid, 2011, 2(4): 865-873
[6] 王建民. 领域大数据应用开发与运行平台技术研究[J]. 软件学报, 2017, 28(6): 1516-1528
[7] 管磊, 胡光俊, 王专. 基于大数据的网络安全态势感知技术研究[J]. 信息网络安全, 2016(9): 45-50
[8] 琚安康, 郭渊博, 朱泰铭. 基于开源工具集的大数据网络安全态势感知及预警架构[J]. 计算机科学, 2017, 44(5): 125-131
[9] Golovko V A. Deep learning: An overview and main paradigms[J]. Optical Memory and Neural Networks, 2017, 26(1): 1-17
[10] Dada E G. A hybridized SVM-kNN-pdAPSO approach to intrusion detection system[C]//Proc of the Faculty Seminar Series. Maiduguri, Nigeria: University of Maiduguri, 2017: 14-21
[11] Hong Y, Huang C, Nandy B, et al. Iterative-tuning support vector machine for network traffic classification[C]//Proceedings of the 2015 IFIP/IEEE Int Symp on Integrated Network Management. Piscataway, NJ: IEEE, 2015: 458-466
[12] Alrawashdeh K, Purdy C. Toward an online anomaly intrusion detection system based on deep learning[C]//Proc of the 2016 15th IEEE Int Conf on Machine Learning and Applications. Piscataway, NJ: IEEE, 2016: 195-200
[13] Staudemeyer R C. Applying long short-term memory recurrent neural networks to intrusion detection[J]. South African Computer Journal, 2015, 56(1): 136-154
[14] Yu Yang, Long Jun, Cai Zhiping. Network intrusion detection through stacking dilated convolutional autoencoders[J]. Security and Communication Networks, 2017
|