-
Kartal H B, Liu Xiaoping, Li Xiaobai. Differential privacy for the vast majority[J]. ACM Trans on Management Information Systems (TMIS), 2019, 10(2): 8:1-8:15
-
谭作文, 张连福. 机器学习隐私保护研究综述[J]. 软件学报, 2020, 31(7): 2127-2156
-
Dwork C. Differential privacy[C] // Proc of the 33rd Int Conf on Automata, Languages and Programming. Berlin: Springer, 2006: 1-12
-
朱天清,何木青,邹德清.基于差分隐私的大数据隐私保护[J].信息安全研究,2015,1(3):224-229.
-
魏立斐, 陈聪聪, 张蕾, 等. 机器学习的安全问题及隐私保护[J]. 计算机研究与发展, 2020, 57(10): 2066-2085
-
Xiang Cheng, Su Sen, Xu Shengzhi, et al. A two-phase algorithm for differentially private frequent subgraph mining[J]. IEEE Trans on Knowledge and Data Engineering, 2018, 30(8): 1411-1425
-
魏国富,石英村.人工智能数据安全治理与技术发展概述[J].信息安全研究,2021,7(2):110-119.
-
Su Xin , Fan Kuan , Shi Wenbo . Privacy-preserving distributed data fusion based on attribute protection[J]. IEEE Trans on Industrial Informatics, 2019, 15(10): 5765-5777
-
Zhang Jun, Cormode G, Procopiuc C M, et al. 2017. PrivBayes: private data release via bayesian Networks[J]. ACM Trans on Database System, 2017, 42(2): 1-41
-
Wang Tianhao , Ding Bolin , Zhou Jingren , et al. Answering multi-dimensional analytical queries under local differential privacy[C] //Proc of the 2019 Int Conf on Management of Data (SIGMOD '19). New York: ACM, 2019: 159–176
-
Bhaskar R, Laxman S, et al. Discovering frequent patterns in sensitive data[C] //Proc of the 16th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining (KDD '13). New York: ACM, 2013: 503–512
-
Wang Ning , Xiao Xiaokui , Yang Yin , et al. PrivSuper: a superset-first approach to frequent itemset mining under differential privacy[C] //Proc of the 2017 IEEE 33rd Int Conf on Data Engineering (ICDE). San Diego: IEEE, 2017: 809-820
-
Usman A , Zhang P , Theel O . An efficient and updatable item-to-item frequency matrix for frequent itemset generation[C] //Proc of the Second International Conf on Internet of things, Data and Cloud Computing (ICC '17). New York: ACM, 2017: 1–6
-
Agrawal R. Mining association rules between sets of items in large databases[C] //Proc of the 1993 ACM SIGMOD Int Conf on Management of data (SIGMOD '93). New York: ACM, 1993: 207–216
-
Han Jiawei, Pei Jian, et al. Mining frequent patterns without candidate generation: a frequent-pattern tree approach[J]. Data Mining & Knowledge Discovery, 2004, 8(1):53-87
-
Li Ninghui, Qardaji W, Su Dong, et al. PrivBasis: frequent itemset mining with differential privacy[J]. Proc of the VLDB Endowment, 2012, 5(11):1340-1351
-
Zhen Hao , Chiou Bochen, Tsou Yaotung, et al. Association rule mining with differential privacy[C]//Proc of the 2020 50th Annual IEEE/IFIP Int Conf on Dependable Systems and Networks Workshops (DSN-W). Piscataway, NJ: IEEE, 2020: 47-54
-
Mihai M , Gabriel G . Precision-enhanced differentially-private mining of high-confidence association rules[J]. IEEE Trans on Dependable and Secure Computing, 2018, 17(6): 1297-1309
-
Dwork C, Mcsherry F, Nissim K , et al. Calibrating noise to sensitivity in private data analysis[C]// Proc of the Third Conf on Theory of Cryptography. Berlin: Springer, 2006: 637-648
-
McSherry, Frank. Privacy integrated queries: An extensible platform for privacy-preserving data analysis [J]. Communications of the ACM, 2010, 53(9):89-97
-
Zeng Chen, Naughton J F, Cai Jinyi. On differentially private frequent itemset mining[C]. Proc of the VLDB Journal, 2012, 6(1):25-36
|