[1] STANFORD C. Gartner says 6. 4 billion connected“things”will be in use in 2016, up 30 percent from 2015 [EB/OL]. [2017-1210]. http: www.gartner.com/newsroom/id/3165317.
[2] IoT Analytics. IoTAnalytics-State of the IoT Winter 2018-2019 -vf. http:iot-analytics.com/
[3] Medaglia C M, Serbanati A. An overview of privacy and security issues in the internet of things[C], The internet of things: 20th Tyrrhenian Workshop on Digital Communications, New York, Springer, 2010: 389-395
[4] Weber R H. Internet of Things–New security and privacy challenges [J]. Computer law & security review, 2010, 26(1): 23-30.
[5] Kohno T, Broido A, Claffy K C. Remote physical device finger-printing[J]. IEEE Transactions on Dependable and Secure Computing, 2005, 2(2): 93-108.
[6] Cui A, Stolfo S J. A quantitative analysis of the insecurity of embedded network devices: results of a wide-area scan[C], In Proceedings of the 26th Annual Computer Security Ap-plications Conference. New York: ACM, 2010: 97-106.
[7] Radhakrishnan S V, Uluagac A S, Beyah R. GTID: A technique for physical device and device type fingerprinting [J]. IEEE Transactions on Dependable and Secure Computing, 2014, 12(5): 519-532.
[8] 曹来成, 赵建军, 崔翔, 李可. 基于余弦测度下K-means 的网络空间终端设备识别 [J]. 中国科学院大学学报, 2016, 33(4): 562-569
[9] 任春林,谷雨,崔杰,刘松,朱红松,孙利民, 基于WEB信息的特定类型物联网终端识别方法[J], 通信技术, 2017, 50(5): 1003-1009
[10] Y. Meidan, B. Michael, S. Asaf, J.D. Guarnizo, O. Martín, N.O. Tippenhauer and E. Yuval, ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis[C], In Proceedings of the Symposium on Applied Computing, Marrakech Morocco, New York: ACM, 2017: 506-509
[11] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray and I. Ray, IoTSense: Behavioral Fingerprinting of IoT Devices, arXiv preprint arXiv, 2018: 1804.03852
[12] Y. Meidan, B. Michael, S. Asaf, J.D. Guarnizo, O. Martín, N.O. Tippenhauer and E. Yuval, ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis[C], In Proceedings of the Symposium on Applied Computing, 2017: 506-509
[13]王鲁华,基于数据挖掘的网络入侵检测方法[J], 信息安全研究, 2017, 3(9): 810-816
[14] 高一骄, AI+生物识别技术对可信身份认证的挑战? [J], 信息安全研究, 2020, 6 (7): 645-651
[15] 李俊, 柴海新, 基于FIDO技术的物联网身份认证解决方案[J], 信息安全研究, 2021, 7 (4): 358-366
|