[1]Parkar P, Bilimoria A. A survey on cyber security IDS using ML methods[COL] Proc of the 5th Int Conf on Intelligent Computing and Control Systems (ICICCS). 2021: 352360 [20230911]. https:www.researchgate.netpublication351910729_A_Survey_on_Cyber_Security_IDS_using_ML_Methods[2]Pietraszek T, Tanner A. Data mining and machine learning—Towards reducing false positives in intrusion detection[J]. Information Security Technical Report, 2005, 10(3): 169183[3]Alahmadi B A, Axon L, Martinovic I. 99% false positives: A qualitative study of SOC analysts’ perspectives on security alarms[C] Proc of the 31st USENIX Security Symp (USENIX Security). Berkeley, CA: USENIX Association, 2022: 1012[4]徐砚, 李鹏, 许爱东. 一种基于全流量的网络安全基线生成方法: 中国, CN201811589819.0[P]. 20190222[5]叶晓舟, 李超鹏. 一种基于安全基线模型的网络数据安全检测方法及系统: 中国, CN201710834724.X[P]. 20190322[6]魏明, 阮安邦, 王佳帅, 等. 基于UEBA进行异常行为事件的判断方法,装置及相关产品: 中国, CN202011323857.9[P]. 20210302[7]Zhao N, Jin P, Wang L, et al. Automatically and adaptively identifying severe alerts for online service systems[C] Proc of the IEEE Conf on Computer Communications. Piscataway, NJ: IEEE, 2020: 24202429[8]Zhao N, Chen J, Peng X, et al. Understanding and handling alert storm for online service systems[C] Proc of the 42nd IEEEACM Int Conf on Software Engineering: Software Engineering in Practice (ICSESEIP). Piscataway, NJ: IEEE, 2020: 162171[9]Li Z, Chen J, Jiao R, et al. Practical root cause localization for microservice systems via trace analysis[C] Proc of the 29th IEEEACM Int Symp on Quality of Service (IWQOS). Piscataway, NJ: IEEE, 2021: 110[10]Aksar B, Zhang Y, Ates E, et al. Proctor: A semisupervised performance anomaly diagnosis framework for production HPC systems[C] Proc of Int Conf on High Performance Computing. Berlin: Springer, 2021: 195214[11]Tuncer O, Ates E, Zhang Y, et al. Online diagnosis of performance variation in HPC systems using machine learning[J]. IEEE Trans on Parallel and Distributed Systems, 2018, 30(4): 883896[12]Ma M, Yin Z, Zhang S, et al. Diagnosing root causes of intermittent slow queries in cloud databases[J]. Proceedings of the VLDB Endowment, 2020, 13(8): 11761189[13]吴复迪, 刘文懋, 薛见新, 等. 一种攻击意图识别方法及装置: 中国, CN202011038322.7[P]. 20200928[14]Manku G S, Jain A, Das Sarma A. Detecting nearduplicates for Web crawling[C] Proc of the 16th Int Conf on World Wide Web. New York: ACM, 2007: 141150[15]吴复迪, 薛见新, 张润滋, 等. 一种检测攻击告警的方法、装置、检测设备及存储介质: 中国, CN202111558765.3[P]. 20211220[16]Abadi M, Barham P, Chen J, et al. TensorFlow: A system for largescale machine learning[C] Proc of the 12th USENIX Symp on Operating Systems Design and Implementation (OSDI 16). Berkeley, CA: USENIX Association, 2016: 265283[17]绿盟科技. 智能安全运营技术白皮书[EBOL]. 2020 [20221218]. https:www.nsfocus.com.cnhtml202092_1218142.html[18]薛见新, 王星凯, 张润滋, 等. 基于异构属性图的自动化攻击行为语义识别方法[J]. 信息安全研究, 2022, 8(3): 292300
|