Journal of Information Security Reserach ›› 2023, Vol. 9 ›› Issue (6): 557-.

Previous Articles     Next Articles

Towards a Privacy-preserving Research for AI and Blockchain Integration


  • Online:2023-06-04 Published:2023-06-03



  1. (海南大学网络空间安全学院海口570228)
  • 通讯作者: 李宗维 硕士研究生.主要研究方向为区块链安全.
  • 作者简介:李宗维 硕士研究生.主要研究方向为区块链安全. 孔德潮 硕士研究生.主要研究方向为区块链安全. 牛媛争 硕士研究生.主要研究方向为区块链安全. 彭红利 硕士研究生.主要研究方向为区块链安全、人工智能. 李晓琦 博士,副教授.主要研究方向为区块链、软件与系统安全、软件工程、人工智能与机器学习. 李文凯 硕士研究生.主要研究方向为智能合约安全和机器学习.

Abstract: With the widespread attention and application of artificial intelligence (AI) and blockchain technologies, privacy protection techniques arising from their integration are of notable significance. In addition to protecting the privacy of individuals, these techniques also guarantee the security and dependability of data. This paper initially presents an overview of AI and blockchain, summarizing their combination along with derived privacy protection technologies. It then explores specific application scenarios in data encryption, deidentification, multitier distributed ledgers, and kanonymity methods. Moreover, the paper evaluates five critical aspects of AIblockchainintegration privacy protection systems, including authorization management, access control, data protection, network security, and scalability. Furthermore, it analyzes the deficiencies and their actual cause, offering corresponding suggestions. This research also classifies and summarizes privacy protection techniques based on AIblockchain application scenarios and technical schemes. In conclusion, this paper outlines the future directions of privacy protection technologies emerging from AI and blockchain integration, including enhancing efficiency and security to achieve more comprehensive privacy protection of AI privacy.

Key words: blockchain, AI, privacy protection, data encryption, deidentification, access control

摘要: 随着人工智能和区块链技术受到广泛的关注和应用,基于人工智能和区块链融合的隐私保护技术也备受瞩目.这类技术不仅能够保护个人隐私,还能保障数据的安全性和可靠性.首先,概述了人工智能与区块链,并概括了它们的结合及所衍生出的隐私保护技术.其次,探究了人工智能与区块链融合的隐私保护技术在实际应用中的具体场景,包括数据加密、去标识化、多层次分布式账本和K匿名方法等.此外,还重点评估了基于人工智能与区块链融合的隐私保护系统的5个关键特性,即权限管理、访问控制、数据保护、网络安全和可扩展性.进一步地,对现有系统中存在的不足和原因进行了深入分析,提出一系列改进建议,以期提高人们对数据隐私保护的认识和应对措施.对基于人工智能与区块链融合的隐私保护技术的应用场景及技术方案进行了分类与总结.最后,探讨了基于人工智能和区块链融合的隐私保护技术的发展方向,包括提高效率、安全性等,以实现更完善的隐私保护.

关键词: 区块链, 人工智能, 隐私保护, 数据加密, 去标识化, 访问控制