[1]Goodfellow I J, PougetAbadie J, Mirza M, et al. Generative adversarial networks[J]. arXiv preprint, arXiv:1406.2661, 2014, 1406[2]Creswell A, White T, Dumoulin V, et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 5365[3]Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review[JOL]. Medical Image Analysis, 2019 [20230426]. https:doi.org10.1016j.media.2019.101552[4]Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint, arXiv:1511.06434, 2015[5]Arjovsky M, Chintala S, Bottou L. Wasserstein gan. arXiv 2017[J]. arXiv preprint, arXiv:1701.07875, 2017, 30(4)[6]Mielikainen J. LSB matching revisited[J]. IEEE Signal Processing Letters, 2006, 13(5): 285287[7]Karras T, Aila T, Laine S, et al. Progressive growing of gans for improved quality, stability, and variation[J]. arXiv preprint, arXiv:1710.10196, 2017[8]付章杰, 王帆, 孙星明, 等. 基于深度学习的图像隐写方法研究[J]. 计算机学报, 2020, 43(9): 16561672[9]Liu J,Ke Y, Zhang Z, et al. Recent advances of image steganography with generative adversarial networks[J]. IEEE Access, 2020, 8: 6057560597[10]Volkhonskiy D, Nazarov I, Burnaev E. Steganographic generative adversarial networks[J]. arXiv preprint, arXiv:1703.05502, 2017[11]Liu X, Ma Z, Ma J, et al. Image disentanglement autoencoder for steganography without embedding[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2022: 23032312[12]李晓龙. 图像可逆隐藏综述[J]. 信息安全研究, 2016, 2(8): 729734[13]Subramanian N,Cheheb I, Elharrouss O, et al. Endtoend image steganography using deep convolutional autoencoders[J]. IEEE Access, 2021, 9: 135585135593[14]Wei P, Li S, Zhang X, et al. Generative Steganography Network[C] Proc of the 30th ACM Int Conf on Multimedia. New York: ACM, 2022: 16211629[15]Das A, Wahi J S, Anand M, et al. Multiimage steganography using deep neural networks[J]. arXiv preprint, arXiv:2101.00350, 2021[16]Shi H, Dong J, Wang W, et al. SSGAN: Secure steganography based on generative adversarial networks[J]. arXiv preprint, arXiv:1707.01613, 2017[17]Wu P, Yang Y, Li X. StegNet: Mega image steganography capacity with deep convolutional network[JOL]. Future Internet, 2018 [20230426]. https:doi.org10.3390fi10060054[18]Yang J, Liu K, Kang X, et al. Spatial image steganography based on generative adversarial network[J]. arXiv preprint, arXiv:1804.07939, 2018[19]Ronneberger O, Fischer P, Brox T. UNet: Convolutional networks for biomedical image segmentation[G] Medical Image Computing and ComputerAssisted Intervention—MICCAI 2015. Berlin: Springer, 2015: 234241[20]Baluja S. Hiding images in plain sight: Deep steganography[J]. Advances in Neural Information Processing Systems, 2017, 30: 20702080[21]Zhang R, Dong S, Liu J. Invisible steganography via generative adversarial networks[J]. Multimedia Tools and Applications, 2019, 78: 85598575[22]Liu Z, Luo P, Wang X, et al. Deep learning face attributes in the wild[C] Proc of the IEEE Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2015: 37303738[23]Zhang R, Zhu F, Liu J, et al. Depthwise separable convolutions and multilevel pooling for an efficient spatial CNNbased steganalysis[J]. IEEE Trans on Information Forensics and Security, 2019, 15: 11381150[24]Deng L. The mnist database of handwritten digit images for machine learning research[best of the Web][J]. IEEE Signal Processing Magazine, 2012, 29(6): 141142[25]Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Trans on Image Processing, 2004, 13(4): 600612 |