[1]Li Bin, He Junhui, Huang Jiwu, et al. A survey on image steganography and steganalysis[J]. Journal Information Hiding Multimedia Signal Process, 2011, 2(2): 142172[2]Boroumand M, Chen M, Fridrich J. Deep residual network for steganalysis of digital images[J]. IEEE Trans on Information Forensics and Security, 2018, 14(5): 11811193[3]Zhang R, Zhu F, Liu J, et al. Depthwise separable convolutions and multilevel pooling for an efficient spatial CNN based steganalysis[J]. IEEE Trans on Information Forensics and Security, 2019, 15: 11381150[4]You W, Zhang H, Zhao X. A siamese CNN for image steganalysis[J]. IEEE Trans on Information Forensics and Security, 2020, 16: 291306[5]Goyal A, Bochkovski A, Deng J, et al. Nondeep networks[EBOL]. 2022 [20230212]. https:arxiv.orgpdf2110.07641.pdf[6]Liu Yichao, Shao Zongru, Teng Yueyang, et al. NAM: Normalizationbased attention module[EBOL]. 2021 [20230212]. https:arxiv.orgpdf2111.12419.pdf[7]Hu J, Shen L, Sun G. Squeezeandexcitation networks[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2018: 71327141[8]Guo Menghao, Liu Zheng, Mu Taijiang, et al. Beyond selfattention: External attention using two linear layers for visual tasks[EBOL]. 2021 [20230212]. https:arxiv.orgpdf2105.02358.pdf[9]Holub V, Fridrich J, Denemark T. Universal distortion function for steganography in an arbitrary domain[J]. EURASIP Journal on Information Security, 2014, 2014(1): 113[10]Li Bin, Wang Ming, Huang Jiwu, et al. A new cost function for spatial image steganography[C] Proc of IEEE Int Conf on Image Processing. Piscataway, NJ: IEEE, 2014: 42064210[11]Holub V, Fridrich J. Designing steganographic distortion using directional filters[J]. IEEE International Workshop on Information Forensics and Security, 2012, 2(4): 234239[12]Pevn T, Filler T, Bas P. Using highdimensional image models to perform highly undetectable steganography[C] Proc of Int Workshop on Information Hiding. Berlin: Springer, 2010: 161177[13]Sedighi V, Cogranne R, Fridrich J. Contentadaptive steganography by minimizing statistical detectability[J]. IEEE Trans on Information Forensics and Security, 2016, 11(2): 221234[14]Qian Y, Dong J, Wang W, et al. Deep learning for steganalysis via convolutional neural networks[G] SPIE 9409: Media Watermarking, Security, and Forensics 2015. Bellingham, WA: SPIE, 2015: 171180[15]Xu G, Wu H Z, Shi Y. Structural design of convolutional neural networks for steganalysis[J]. IEEE Signal Processing Letters, 2016, 23(5): 708712[16]Ye Jian, Ni Jiangqun, Yi Yang. Deep learning hierarchical representations for image steganalysis[J]. IEEE Trans on Information Forensics and Security, 2017, 12(11): 25452557[17]Ding Xiaohan, Zhang Xiangyu, Ma Ningning, et al. RepVGG: Making VGGstyle ConvNets great again[EBOL]. 2021 [20230212]. https:arxiv.orgpdf2101.03697.pdf[18]Lin Tsunyi, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2020, 32(2): 318327[19]Smith L N. Cyclical focal loss[EBOL]. 2022 [20230212]. https:arxiv.orgpdf2202.08978.pdf[20]Bas P, Filler T, Pevn T. “Break our steganographic system”: The ins and outs of organizing BOSS[C] Proc of Int Workshop on Information Hiding. Berlin: Springer, 2011: 5970 |