Journal of Information Security Reserach ›› 2023, Vol. 9 ›› Issue (7): 631-.

Previous Articles     Next Articles

Research and Thinking on Data Classification and Grading of Important Information Systems#br#

  

  • Online:2023-07-01 Published:2023-07-01

重要信息系统数据分类分级的研究与思考

李萌1李健2徐平洋1张荷1林琳1   

  1. 1(国家药品监督管理局信息中心北京100044)
    2(中国食品药品检定研究院北京102629)
  • 通讯作者: 李萌 高级工程师.主要研究方向为网络安全、信息化基础设施建设、云平台建设. brushli@163.com
  • 作者简介:李萌 高级工程师.主要研究方向为网络安全、信息化基础设施建设、云平台建设. brushli@163.com 李健 硕士,正高级工程师.主要研究方向为信息化建设. lijian@nifdc.org.cn 徐平洋 硕士,工程师.主要研究方向为网络安全. cpul12@sina.com 张荷 工程师.主要研究方向为网络安全与运行维护管理. eldeast@sohu.com 林琳 硕士,高级工程师.主要研究方向为网络安全. linlin@nmpaic.org.cn

Abstract: With the development of information technology and networking, incidents surrounding data security are also increasing. The data as a new production factor, is particularly important to ensure the security of important data. The “Data Security Law of the People’s Republic of China” clearly stipulates that the country should establish a data classification and grading protection system to implement classification and grading protection for data. This paper will study China’s data safety management regulations and policies, analyze the the degree of impact and influening objects of data damage, propose specific data classification and grading methods, and provide security protection and governance measures under data classification and grading management based on the industry characteristics and application scenarios of government data. It will achieve the openness and sharing of the data under safety protection, and provide reference for the classification and classification protection of the data in the future.

Key words: data security, classification and grading, drug safety data, openness and sharing, protection governance

摘要: 随着信息技术和网络化发展,围绕数据安全的事件风波也在不断增多,数据作为新的生产要素,确保重要数据的安全尤为重要,《中华人民共和国数据安全法》中明确规定国家建立数据分类分级保护制度,对数据实行分类分级保护.将通过研究我国数据安全管理法规政策,分析数据遭受破坏后的影响程度、影响对象等因素,提出具体的数据分类分级方法,并根据政务数据的行业特点、应用场景等,给出数据分类分级管理下的安全防护治理措施,实现数据在安全防范下的开放性、共享性,给未来政务数据分类分级保护工作提供参考.

关键词: 数据安全, 分类分级, 政务数据, 开放共享, 防护治理