[1]Li F H, Li H, Niu B, et al. Privacy computing: Concept, computing framwork, and future development trends[J]. Engineering, 2019, 5(6): 11791192, 13071322[2]隐私计算联盟, 中国信息通信研究院云计算与大数据研究所. 隐私计算白皮书[EBOL]. 2021 [20230709]. https:www.doc88.comP39239696189777.html[3]Shamir A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612613[4]Blakley G R. Safeguarding cryptographic keys[C] Proc of Int Workshop on Managing Requirements Knowledge. Los Alamitos, CA: IEEE Computer Society, 1979: 313313[5]庞辽军, 姜正涛, 王育民. 基于一般访问结构的多重秘密共享方案[J]. 计算机研究与发展, 2006, 43(1): 3338[6]Harn L. Secure secret reconstruction and multisecret sharing schemes with unconditional security[J]. Security and Communication Networks, 2014, 7(3): 567573[7]张艳硕, 赵瀚森, 陈辉焱, 等. 概率型2选1不经意传输协议的方案设计[J]. 密码学报, 2021, 8(2): 282293[8]朱晓玲, 陆阳, 侯整风, 等. VANET中基于不经意传输和群签名的强隐私保护方案[J]. 计算机应用研究, 2014, 31(1): 226230[9]李晔. 具有隐私保护的外包数据分类方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018[10]Mezzour G, Perrig A, Gligor V, et al. Privacypreserving relationship path discovery in social networks[C] Proc of the 8th Int Conf on Cryptology and Network Security (CANS 2009). Berlin: Springer, 2009: 189208[11]罗小双, 杨晓元, 王绪安. 一类可抵抗恶意攻击的隐私集合交集协议[J]. 计算机应用, 2017, 37(6): 15931598[12]Khoshgozaran A, Shahabi C, ShiraniMehr H. Location privacy: Going beyond Kanonymity, cloaking and anonymizers[J]. Knowledge and Information Systems, 2011, 26(3): 435465[13]陈杨杨, 黄征, 徐礼吏. 多服务器环境下的隐私信息检索[J]. 信息安全与通信保密, 2011, 9(12): 100102[14]Shokri R, Stronati M, Song C, et al. Membership inference attacks against machine learning models[C] Proc of 2017 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2017: 318[15]Bonawitz K, Ivanov V, Kreuter B, et al. Practical secure aggregation for privacypreserving machine learning[C] Proc of the 2017 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2017: 11751191[16]杨波, 冯登国, 秦宇, 等. 基于TrustZone的可信移动终端云服务安全接入方案[J]. 软件学报, 2016, 27(6): 13661383[17]Zhang Y, Li Y, Fang L, et al. Privacyprotected electronic voting system based on blockchin and trusted execution environment[C] Proc of the 5th IEEE Int Conf on Computer and Communications (ICCC). Piscataway, NJ: IEEE, 2019: 12521257[18]朱建明, 张沁楠, 高胜, 等. 基于区块链的隐私保护可信联邦学习模型[J]. 计算机学报, 2021, 44(12): 24642484[19]熊璐, 杨阳, 沙金锐, 等. 基于区块链的隐私保护交集算法[J]. 通信技术, 2020, 53(7): 17681773[20]祝烈煌, 高峰, 沈蒙, 等. 区块链隐私保护研究综述[J]. 计算机研究与发展, 2017, 54(10): 21702186[21]王慧, 王励成, 柏雪, 等. 区块链隐私保护和扩容关键技术研究[J]. 西安电子科技大学学报, 2020, 47(5): 2839[22]Rouhani B D, Riazi M S, Koushanfar F. Deepsecure: Scalable provablysecure deep learning[C] Proc of the 55th Annual Design Automation Conf. 2018: 16[23]Makri E, Rotaru D, Smart N P, et al. EPIC: Efficient private image classification[C] Proc of CTRSA. Berlin: Springer, 473492[24]王利娥, 李小聪, 刘红翼. 融合知识图谱和差分隐私的新闻推荐方法[J]. 计算机应用, 2022, 42(5): 13391346[25]陈名杨, 张文, 陈湘楠, 等. 群体知识图谱: 分布式知识迁移与联邦式图谱推理[J]. 智能科学与技术学报, 2022, 4(1): 5564 |