[1]中国互联网络信息中心. 中国互联网络信息中心发布第52次《中国互联网络发展状况统计报告》[J]. 国家图书馆学刊, 2023, 32(5): 1313[2]央视新闻. 西北工业大学遭美国NSA网络攻击事件调查报告(之一)[EBOL]. (20220905) [20230322]. https:www.weibo.comttarticlepshow?id=2309404810285897875629[3]Li Y, Ma R, Jiao R. A hybrid malicious code detection method based on deep learning[J]. International Journal of Security and Its Applications, 2015, 9(5): 205216[4]Kiran A, Prakash S W, Kumar B A, et al. Intrusion detection system using machine learning[C] Proc of 2023 Int Conf on Computer Communication and Informatics (ICCCI). Piscataway, NJ: IEEE, 2023: 14[5]康海燕, 冀源蕊. 基于本地化差分隐私的联邦学习方法研究[J]. 通信学报, 2022, 43(10): 9410[6]马钰锡, 张全新, 谭毓安, 等. 面向智能攻击的行为预测研究[J]. 软件学报, 2021, 32(5): 15261546[7]高莹, 陈晓峰, 张一余, 等. 联邦学习系统攻击与防御技术研究综述[J]. 计算机学报, 2023, 46(9): 17811805[8]Zhang H, Zeng K, Lin S. Federated graph neural network for fast anomaly detection in controller area networks[J]. IEEE Trans on Information Forensics and Security, 2023, 18: 15661579[9]Huang X, Liu J, Lai Y, et al. EEFED: Personalized federated learning of execution & evaluation dual network for CPS intrusion detection[J]. IEEE Trans on Information Forensics and Security, 2022, 18: 4156[10]程显淘. 针对联邦学习的恶意客户端检测及防御方法[J].信息安全研究, 2024, 10(2): 163169[11]Aldweesh A, Derhab A, Emam A Z. Deep learning approaches for anomalybased intrusion detection systems: A survey, taxonomy, and open issues[J]. KnowledgeBased Systems, 2020, 189: 105124105142[12]Agrawal S, Sarkar S, Aouedi O, et al. Federated learning for intrusion detection system: Concepts, challenges and future directions[J]. Computer Communications, 2022, 195: 346361[13]Jin D, Chen S, He H, et al. Federated incremental learning based evolvable intrusion detection system for zeroday attacks[J]. IEEE Network, 2023, 37(1): 125132[14]Zhang Z, Zhang Y, Guo D, et al. SecFedNIDS: Robust defense for poisoning attack against federated learningbased network intrusion detection system[J]. Future Generation Computer Systems, 2022, 134: 154169[15]Liao H J, Lin C H R, Lin Y C, et al. Intrusion detection system: A comprehensive review[J]. Journal of Network and Computer Applications, 2013, 36(1): 1624[16]Fan J, Wang Z, Xie Y, et al. A theoretical analysis of deep Qlearning[C] Proc of the 2nd Conf on Learning for Dynamics and Control. New York: PMLR, 2020: 486489 |