[1]He J, Wang X, Song Y, et al. A multiscale intrusion detection system based on pyramid depthwise separable convolution neural network[J]. Neurocomputing, 2023, 530: 4859[2]Pan H, Chen S, Xiong H. A highdimensional feature selection method based on modified Gray Wolf Optimization[JOL]. 2023 [20240305]. https:doi.org10.1016j.asoc.2023.110031[3]Agrawal R K, Kaur B, Sharma S. Quantum based whale optimization algorithm for wrapper feature selection[J]. Applied Soft Computing, 2020, 89: 106092[4]Got A, Moussaoui A, Zouache D. Hybrid filterwrapper feature selection using whale optimization algorithm: A multiobjective approach[J]. Expert Systems with Applications, 2021, 183: 115312[5]Maldonado J, Riff M C, Neveu B. A review of recent approaches on wrapper feature selection for intrusion detection[JOL]. 2022 [20240305]. https:doi.org10.1016j.eswa.2022.116822[6]Alzaqebah A, Aljarah I, AlKadi O, et al. A modified grey wolf optimization algorithm for an intrusion detection system[J]. Mathematics, 2022, 10(6): 116[7]张天月, 陈伟, 刘宇啸. 基于多尺度时空残差网络的入侵检测方法[J]. 信息安全研究, 2023, 9(11): 10451053[8]Alzubi Q M, Anbar M, Sanjalawe Y, et al. Intrusion detection system based on hybridizing a modified binary grey wolf optimization and particle swarm optimization[J]. Expert Systems with Applications, 2022, 204: 117597[9]Alghanam O A, Almobaideen W, Saadeh M, et al. An improved PIO feature selection algorithm for IoT network intrusion detection system based on ensemble learning[J]. Expert Systems with Applications, 2023, 213: 118745[10]Vijayanand R, Devaraj D. A novel feature selection method using whale optimization algorithm and genetic operators for intrusion detection system in wireless mesh network[J]. IEEE Access, 2020, 8: 5684756854[11]Ahmad J, Shah S A, Latif S, et al. DRaNN_PSO: A deep random neural network with particle swarm optimization for intrusion detection in the industrial Internet of things[J]. Journal of King Saud UniversityComputer and Information Sciences, 2022, 34(10): 81128121 [12]Pingale S V, Sutar S R. Remora whale optimizationbased hybrid deep learning for network intrusion detection using CNN features[J]. Expert Systems with Applications, 2022, 210: 118476[13]Jia H, Liu J, Zhang M, et al. Network intrusion detection based on IEDBN model[J]. Computer Communications, 2021, 178: 131140[14]Alazzam H, Sharieh A, Sabri K E. A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer[J]. Expert Systems with Applications, 2020, 148: 113249[15]Alazab M, Khurma R A, Awajan A, et al. A new intrusion detection system based on MothFlame Optimizer algorithm[J]. Expert Systems with Applications, 2022, 210: 118439[16]LopezMartin M, SanchezEsguevillas A, Arribas J I, et al. Supervised contrastive learning over prototypelabel embeddings for network intrusion detection[J]. Information Fusion, 2022, 79: 200228[17]Udas P B, Karim Md E, Roy K S. SPIDER: A shallow PCA based network intrusion detection system with enhanced recurrent neural networks[J]. Journal of King Saud UniversityComputer and Information Sciences, 2022, 34(10): 1024610272 |