[1]Balduccini M, Kushner S, Speck J. Ontologydriven data semantics discovery for cybersecurity[C] Proc of the 17th Int Symp on PADL.New York: ACM, 2015: 116[2]Liao X, Yuan K, Wang X F, et al. Acing theioc game: Toward automatic discovery and analysis of opensource cyber threat intelligence[C] Proc of the 2016 SIGSAC Conf on Computer and Communications Security. New York: ACM, 2016: 755766[3]Qin Y, Shen G, Yu H. Largescale network security entity recognition method based onhadoop[J]. CAAI Trans on Intelligent Systems, 2019, 14(5): 10171025[4]Yan Y, Zhu P, Cheng D, et al. Adversarial multitask learning for efficient Chinese named entity recognition[J]. ACM Trans on Asian and LowResource Language Information Processing, 2023, 22(7): 119[5]VeeraSekharReddy B, Rao K S, Koppula N. An attention based BiLSTM DenseNet model for named entity recognition in English texts[J]. Wireless Personal Communications, 2023, 130(2): 14351448[6]Phan U, Nguyen N. Simple semanticbased data augmentation for named entity recognition in biomedical texts[C] Proc of the 21st Workshop on Biomedical Language Processing. Stroudsburg, PA: ACL, 2022: 123129[7]Bayer M, Frey T, Reuter C. Multilevel finetuning, data augmentation, and fewshot learning for specialized cyber threat intelligence[J]. Computers & Security, 2023, 134: 103430[8]Ma P, Jiang B, Lu Z, et al. Cybersecurity named entity recognition using bidirectional long shortterm memory with conditional random fields[J]. Tsinghua Science and Technology, 2020, 26(3): 259265[9]He B, Chen J. Named entity recognition method in network security domain based on BERTBiLSTMCRF[C] Proc of the 21st Int Conf on Communication Technology (ICCT). Piscataway, NJ: IEEE, 2021: 508512[10]Evangelatos P, Iliou C, Mavropoulos T, et al. Named entity recognition in cyber threat intelligence using transformerbased models[C] Proc of IEEE Int Conf on Cyber Security and Resilience (CSR). Piscataway, NJ: IEEE, 2021: 348353[11]Huang Y, Su M, Xu Y,et al. NER in cyber threat intelligence domain using transformer with TSGL[J]. Circuits, Systems and Computers, 2023, 32(12): 2350201[12]李思涌, 吴书汉, 孙伟. 基于注意力机制的CNN LSTM网络车内CAN总线入侵检测技术[J]. 信息安全研究, 2023, 9(10): 961967[13]薛见新, 王星凯, 张润滋, 等. 基于异构属性图的自动化攻击行为语义识别方法[J]. 信息安全研究, 2022, 8(3): 292300[14]Wang X, Liu X, Ao s, et al. Dnrti: A largescale dataset for named entity recognition in threat intelligence[C] Proc of the 19th Int Conf on Trust, Security and Privacy in Computing and Communications (TrustCom). Piscataway, NJ: IEEE, 2020: 18421848[15]Wang K, Liu Q, Zhang K, et al. Classdynamic and hierarchyconstrained network for entity linking[C] Proc of Int Conf on Database Systems for Advanced Applications. Piscataway, NJ: IEEE, 2023: 622638[16]Rehman T, Sanyal D K, Chattopadhyay S. Research highlight generation with ELMo contextual embeddings[J]. Scalable Computing: Practice and Experience, 2023, 24(2): 181190[17]束文豪, 奚雪峰, 崔志明. 图神经网络在命名实体识别中的应用研究[J]. 计算机工程与应用, 2023, 59(19): 5265 |