[1]Von Ahn L, Blum M, Langford J. Telling humans and computers apart automatically[J]. Communications of the ACM, 2004, 47(2): 5660[2]Zhang Y, Gao H, Pei G, et al. A survey of research on captcha designing and breaking techniques[C] Proc of the 18th IEEE Int Conf on Trust, Security and Privacy in Computing and Communications13th IEEE Int Conf on Big Data Science and Engineering (TrustComBigDataSE). Piscataway, NJ: IEEE, 2019: 7584[3]Zi Y, Gao H, Cheng Z, et al. An endtoend attack on text captchas[J]. IEEE Trans on Information Forensics and Security, 2019, 15: 753766[4]Zhang N, Ebrahimi M, Li W, et al. A generative adversarial learning framework for breaking textbased CAPTCHA in the dark Web[C] Proc of 2020 IEEE Int Conf Intelligence and Security Informatics (ISI). Piscataway, NJ: IEEE, 2020: 16[5]Kehar A, Arain R H, Shaikh R. Deciphering complex textbased CAPTCHAs with deep learning[J]. Indian Journal of Science and Technology, 2020, 13(13): 13901400[6]Tang M, Gao H, Zhang Y, et al. Research on deep learning techniques in breaking textbased captchas and designing imagebased captcha[J]. IEEE Trans on Information Forensics and Security, 2018, 13(10): 25222537[7]Nian J, Liang Z, Wang X, et al. A feature matchingbased attack on text CAPTCHAs[C] SPIE 12290: Proc of Int Conf on Computer Network Security and Software Engineering (CNSSE 2022). Bellingham, WA: SPIE, 2022: 9297[8]Yusuf M O, Srivastava D, Singh D, et al. Multiview deep learningbased attack to break textCAPTCHAs[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(3): 959972[9]Gogineni S, Suryanarayana G, Swapna N. Machine learning based encoderdecoder for captcha recognition[C] Proc of 2020 Int Conf on Smart Electronics and Communication (ICOSEC). Piscataway, NJ: IEEE, 2020: 222227[10]Ding Y, Tang Z, Wang F. Singlesample face recognition based on shared generative adversarial network[J]. Mathematics, 2022, 10(5): 120[11]Jimale A O, Noor M H M. Fully connected generative adversarial network for human activity recognition[J]. IEEE Access, 2022, 10: 100257100266[12]Shi C, Xu X, Ji S, et al. Adversarial captchas[J]. IEEE Trans on Cybernetics, 2021, 52(7): 60956108[13]Qian Y, Hu H, Tan T. Data augmentation using generative adversarial networks for robust speech recognition[J]. Speech Communication, 2019, 114: 19[14]张郅, 李欣, 叶乃夫, 等. 融合多重风格迁移和对抗样本技术的验证码安全性增强方法[J]. 信息网络安全, 2022, 22(10): 129135[15]Naor M, Shamir A. Visual cryptography[C] Proc of Advances in Cryptology—EUROCRYPT’94: Workshop on the Theory and Application of Cryptographic Techniques Perugia. Berlin: Springer, 1995: 112[16]Wang B, Wang W, Zhao P. A zerowatermark algorithm for multiple images based on visual cryptography and image fusion[J]. Journal of Visual Communication and Image Representation, 2022, 87: 103569[17]Chen T H, Chang C C, Wu C S, et al. On the security of a copyright protection scheme based on visual cryptography[J]. Computer Standards & Interfaces, 2009, 31(1): 15[18]Ren L, Zhang D. Toward privacy protection of sensed biometric features with extended visual cryptography[J]. Microprocessors and Microsystems, 2022, 91: 104540[19]Yan X, Liu F, Yan W Q, et al. Applying visual cryptography to enhance text captchas[J]. Mathematics, 2020, 8(3): 332[20]Alsuihabany S A, Alquraishi M. Usability andsecurity of arabic textbased CAPTCHA using visual cryptography[JOL]. Computer Systems Science & Engineering, 2022, 40(2) [20241120]. https:sc.panda985.comscholar?q=.+Usability+and+security+of+arabic+textbased+CAPTCHA+using+visual+cryptography&lucky=%E8%B0%B7%E6%AD%8C%E5%AD%A6%E6%9C%AF[21]Mankhair S, Raut A, Mohimkar M, et al. Secured CAPTCHA password verification using visual cryptography[J]. International Journal of Engineering Science and Computing, 2016, 6(5): 52475251[22]Arora A, Garg H, Shivani S. Antiphishing technique based on dynamic image captcha using multi secret sharing scheme[J]. Journal of Visual Communication and Image Representation, 2022, 88: 103624[23]Naor M, Pinkas B. Threshold visual cryptography[C] Proc of ACM SIGSAC Symp on Information, Computer and Communications Security. New York: ACM, 2001: 200208[24]Wu H C, Chang C C. Sharing visual multisecrets using circle shares[J]. Computer Standards & Interfaces, 2005, 28(1): 123135[25]Gannon M. HTML附件在恶意网络钓鱼活动中的使用[EBOL]. 2023 [20240218]. https:cofense.combloghtmlattachmentsusedinmaliciousphishingcampaigns[26]Arndt J. Cofense Intelligence战略分析[EBOL]. 2023 [20240218]. https:cofense.comblogcofenseintelligencestrategicanalysis2 |