[1]Ji Ziwei, Lee N, Frieske R, et al. Survey of hallucination in natural language generation[J]. ACM Compting Surveys, 2023, 55(12): 138[2]Jabbour S, Fouhey D, Shepard S, et al. Measuring the impact of AI in the diagnosis of hospitalized patients: A randomized clinical vignette survey study[J]. American Medical Association, 2023, 330(23): 22752284[3]蚂蚁集团. OpenSPG介绍[EBOL]. [20241111].https:spg.openkg.cn[4]蚂蚁集团. 原生安全范式框架v1.0[EBOL]. [20241111]. https:www.163.comdyarticleIE7DV487051180F7.html[5]Sander S. 注入攻击[EBOL]. [20241111]. https:learnprompting.orgdocsprompt_hackinginjection[6]Wei J, Wang Xuezhi, Schuurmans D, et al. Chainofthought prompting elicits reasoning in large language models[C] Proc of Advances in Neural Information Processing Systems 35. Cambridge, MA: MIT Press, 2022: 2482424837[7]Wang Lei, Xu Wangyu, Lan Yihuai, et al. Planandsolve prompting: Improving zeroshot chainofthought reasoning by large language models[C] Proc of the 61st Annual Meeting of the Association for Computational Linguistics. Cambridge, MA: MIT Press, 2023: 26092634[8]Nakano R, Hilton J, Balaji S, et al. WebGPT: Browserassisted questionanswering with human feedback[J]. arXiv preprint, arXiv:2112.09332, 2021[9]Fan A, Jernite Y, Perez E, et al. ELI5: Long form question answering[C] Proc of the 57th Conf of the Association for Computational Linguistics. Cambridge, MA: MIT Press, 2019: 35583567[10]Yao Shunyu, Zhao J, Yu Dian, et al. ReAct: Synergizing reasoning and acting in language models[J]. arXiv preprint, arXiv:2312.04511, 2023[11]Kim S, Moon S, Tabrizi, et al. An LLM compiler for parallel function calling[J]. arXiv preprint, arXiv:2303.11366v2, 2023[12]Shinn N, Cassano F, Gopinath A, et al. Reflexion: Language agents with verbal reinforcement learning[C] Proc of Advances in Neural Information Processing Systems 36. New York: ACM, 2023: 86348652[13]Chu Zhixuan, Wang Yan, Zhu Fent, et al. Professional agents—Evolving large language models into autonomous experts with humanlevel competencies[J]. arXiv preprint, arXiv:2402.03628, 2024[14]Chu Zhixuan, Hu Mengxuan, Cui Qing, et al. Taskdriven causal feature distillation: Towards trustworthy risk prediction[C] Proc of 38th AAAI Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2024: 1164211650[15]Feng Yu, Zhou Ben, Lin Weidong, et al. BIRD: A trustworthy bayesian inference framework for large language models[J]. arXiv preprint, arXiv: 2404.12494, 2024[16]Deng Gelei, Liu Yi, Li Yuekang, et al. MASTERKEY: Automated jailbreaking of large language model chatbots[J]. arXiv preprint, arXiv:2307.08715v2, 2023[17]Wen Yuxin, Jain N, Kirchenbauer J, et al. Hard prompts made easy: Gradientbased discrete optimization for prompt tuning and discovery[C] Proc of Advances in Neural Information Processing System. New York: ACM, 2023: 5100851025[18]Gustavo S, Pearce H, Nys T, et al. Lost at c: A user study on the security implications of large language model code assistants[C] Proc of the 32nd USENIX Security Symposium (USENIX Security 23). Berkeley, CA: USENIX Association, 2023: 22052222
|