[1]Yang A M, Ma ZZ, Zhang C Y, et al. Review on application progress of federated learning model and security hazard protection[J]. Digital Communications and Networks, 2023, 9(1): 146158[2]Tian D, Li S, Qiu H, et al. An interpretable federated learningbased network intrusion detection framework[J]. arXiv preprint, arXiv:2201.03134, 2022[3]郝劭辰, 卫孜钻, 马垚, 等. 基于高效联邦学习算法的网络入侵检测模型[J]. 计算机应用, 2023, 43(4): 11691175[4]Zhang J H, Cheng X Y, Wang C, et al.FedAda: Fastconvergent adaptive federated learning in heterogeneous mobile edge computing environment[J]. World Wide Web, 2022, 25(5): 19711998[5]Huang Y C, Chen H. Toward data heterogeneity of federated learning[J]. arXiv preprint, arXiv:2212.08944, 2022[6]Engelen G, Rimmer V, Joosen W. Troubleshooting an intrusion detection dataset: The CICIDS2017 case study[C] Proc of IEEE Security and Privacy Workshops. Piscataway, NJ: IEEE, 2021: 712[7]肖雄, 唐卓, 肖斌, 等. 联邦学习的隐私保护与安全防御研究综述[J]. 计算机学报, 2023, 46(5): 10191044[8]Gowtham M, Pramod H B. Semantic queryfeatured ensemble learning model for SQLinjection attack detection in IoTecosystems[J]. IEEE Trans on Reliability, 2022, 71(2): 10571074[9]Bonawitz K, Eichner H,Grieskamp W, et al. Towards federated learning at scale: System design[J]. arXiv preprint, arXiv:1902.01046, 2019[10]杨立圣, 罗文华. TriBERTSENet: 融合多特征的恶意网页识别[J]. 小型微型计算机系统, 2023, 44(4): 875880[11]王蓉, 马春光, 武朋. 基于联邦学习和卷积神经网络的入侵检测方法[J]. 信息网络安全, 2020, 20(4): 4754[12]刘金硕, 詹岱依, 邓娟, 等. 基于深度神经网络和联邦学习的网络入侵检测[J]. 计算机工程, 2023, 49(1): 1521, 30[13]Vucovich M, Tarcar A, Rebelo P, et al. Anomaly detection via federated learning[J]. arXiv preprint, arXiv:2210.06614, 2022[14]Ke Y, Zhang M Q, Liu J, et al. Fully homomorphic encryption encapsulated difference expansion for reversible data hiding in encrypted domain[J]. IEEE Trans on Circuits and Systems for Video Technology, 2020, 30(8): 23532365[15]Wang Y B, Qiao Y, Liu Z B, et al.HighPU: A high privacyutility approach to mining frequent itemset with differential privacy[J]. International Journal of Embedded Systems, 2019, 11(5): 624633[16]刘晓迁, 许飞, 马卓, 等. 联邦学习中的隐私保护技术研究[J]. 信息安全研究, 2024, 10(3): 194201
|