[1]郝超, 裘杭萍, 孙毅, 等. 多标签文本分类研究进展[J]. 计算机工程与应用, 2021, 57(10): 4856[2]Kim Y. Convolutional neural networks for sentence classification[J]. arXiv preprint, arXiv:1408.5882, 2014[3]Nam J, Mencía E L, Kim H J,et al. Maximizing subset accuracy with recurrent neural networks in multilabelclassification[G] Advances in Neural Information Processing Systems. LongBench CA: NIPS, 2017: 54135423[4]Bahdanau D, Cho K, Bengio Y. Neural machine translation by Jointly Learning to Align and Translate[J]. arXiv preprint, arXiv:1409.0473, 2014[5]Yang Z, Yang D, Dyer C, et al. Hierarchical attention networks for document classification[C] Proc of the 2016 Conf of the North American Chapter of the Ssociation for Computational Linguistics: Human Language Technologies. San Diego, USA: Association for Computation Linguistics, 2016: 14801489[6]Vaseani A, Shazeer N, Parmar N, et al. Attention is all you need[G] Advances in Neural Information Processing Systems. LongBench CA: NIPS, 2017: 59986008[7]Devlin J, Chang M W, Lee K, et al. Bert: Pretraining of deep bidirectional transformers for language understanding[J]. arXiv preprint, arXiv:1810.04805, 2018[8]Mihalcea R, Tarau P. Textrank: Bringing order into text[C] Proc of the 2004 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, Pennsylvania: Association for Computational Linguistics, 2004: 404411[9]Zhou C, Sun C, Liu Z, et al. A CLSTM Neural Network for Text Classification[M]. arXiv preprint, arXiv:1511.08630, 2015[10]Wang Jingyi, Zhu T, Kang J, et al. Text classification and threat intelligence generation for industrial control system security[G] Advanced Science and Industry Research Center. Proc of the 2nd Int Conf on Computer, Mechatronics and Electronic Engineering(CMEE 2017). Lancaster, Pennsylvania: DEStech Publications, 2017: 592598[11]Deliu I, Leichter C, Franke K. Collecting cyber threat intelligence from hacker forums via a twostage, hybrid process using support vector machines and latent dirichlet allocation[C] Proc of the 2018 IEEE Int Conf on Big Data. Piscataway, NJ: IEEE, 2018: 50085013[12]Li D, Zhou X, Xue A. Open source threat intelligence discovery based on topic detection[C] Proc of the 29th Int Conf on Computer Communications and Networks (ICCCN). Piscataway, NJ: IEEE, 2020: 14[13]Deliu I, Leichter C, Franke K. Extracting cyber threat intelligence from hacker forums: Support vector machines versus convolutional neural networks[C] Proc of 2017 IEEE Int Conf on Big Data. Piscataway, NJ: IEEE, 2017: 36483656[14]Xun S, Li X Y, Gao Y L. AITI: An automatic identification model of threat intelligence based on convolutional neural network[C] Proc of the 4th Int Conf on Innovation in Artificial Intelligence. New York: ACM, 2020: 2024[15]Zhao J, Yan Q B, Li J X, et al. TIMiner: Automatically extracting and analyzing categorized cyber threat intelligence from social data[J]. Computers & Security, 2020, 95: 101867[16]荀爽. 基于自然语言处理的威胁情报自动化提取模型的研究与实现[D]. 北京: 北京邮电大学, 2020[17]刘江舟, 段立. 基于AlbertTextCNN的网络安全文本多标签分类方法[J]. 舰船电子工程, 2022, 42(3): 114118, 170[18]于忠坤, 王俊峰, 唐宾徽, 等. 基于注意力机制和特征融合的网络威胁情报技战术分类研究[J]. 四川大学学报: 自然科学版, 2022, 59(5): 9097[19]葛文翰, 王俊峰, 唐宾徽, 等. 基于关联增强的网络威胁情报技战术分类[J]. 四川大学学报: 自然科学版, 2022, 59(2): 100108[20]Pappagari R, Zelasko P, Villalba J, et al. Hierarchical transformers for long document classification[C] Proc of the 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). Piscataway, NJ: IEEE, 2019: 838844
|