[1]Bonawitz K, Ivanov V, Kreuter B, et al. Practical secure aggregation for privacypreserving machine learning[C] Proc of the 2017 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2017: 11751191[2]Xu Guowen, Li Hongwei, Liu Sen, et al. VerifyNet: Secure and verifiable federated learning[J]. IEEE Trans on Information Forensics and Security, 2020, 15(3): 911926[3]Nguyen T D, Rieger P, Miettinen M, et al. Poisoning attacks on federated learningbased IoT intrusion detection system[C] Proc of the Workshop on Decentralized IoT Systems and Security (DISS). San Diego, CA: Internet Society, 2020: 79[4]Xiao Xiong, Tang Zhuo, Li Chuanying, et al. SCA: Sybilbased collusion attacks of IIoT data poisoning in federated learning[J]. IEEE Trans on Industrial Informatics, 2023, 19(3): 26082618[5]Shejwalkar V, Houmansadr A. Manipulating the Byzantine: Optimizing model poisoning attacks and defenses for federated learning[C] Proc of the Network and Distributed System Security Symp (NDSS). San Diego, CA: NDSS, 2021[6]Cao Xiaoyu, Fang Minghong, Liu Jia, et al. FLTrust: Byzantinerobust federated learning via trust bootstrapping[J]. arXiv preprint, arXiv:2012.13995, 2020[7]Cao Xiaoyu, Zhang Zaixi, Jia Jinyuan, et al. FLCert: Provably secure federated learning against poisoning attacks[J]. IEEE Trans on Information Forensics and Security, 2022, 17: 36913705[8]Gupta H, Pareek P, Arora A, et al. FedTrace: An efficient model for tracing back data poisoning attacks in federated learning[C] Proc of the 2023 IEEE Int Carnahan Conf on Security Technology (ICCST). Piscataway, NJ: IEEE, 2023: 16[9]Sharma A, Chen W, Zhao J, et al. FLAIR: Defense against model poisoning attack in federated learning[C] Proc of the 2023 ACM Asia Conf on Computer and Communications Security. New York: ACM, 2023: 553566[10]Zhou Jun, Wu Nan, Wang Yisong, et al. A differentially private federated learning model against poisoning attacks in edge computing[J]. IEEE Trans on Dependable and Secure Computing, 2022, 20(3): 19411958[11]Shi Siping, Hu Chuang, Wang Dan, et al. Federated anomaly analytics for local model poisoning attack[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(2): 596610[12]刘晓迁, 许飞, 马卓, 等. 联邦学习中的隐私保护技术研究[J]. 信息安全研究, 2024, 10(3): 194201[13]程显淘. 针对联邦学习的恶意客户端检测及防御方法[J]. 信息安全研究, 2024, 10(2): 163169
|