Journal of Information Security Reserach ›› 2025, Vol. 11 ›› Issue (1): 35-.

Previous Articles     Next Articles

Container Anomaly Detection Based on Attention Mechanism and  Multiscale Convolutional Neural Network

Li Wei, Yuan Zekun, Wu Kehe, and Cheng Rui   

  1. (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206)
  • Online:2025-01-24 Published:2025-01-24

基于注意力机制和多尺度卷积神经网络的容器异常检测

李为袁泽坤吴克河程瑞   

  1. (华北电力大学控制与计算机工程学院北京102206)
  • 通讯作者: 袁泽坤 硕士.主要研究方向为网络信息安全. zkyuan1531@foxmail.com
  • 作者简介:李为 硕士,教授.主要研究方向为网络信息安全. epulw@126.com 袁泽坤 硕士.主要研究方向为网络信息安全. zkyuan1531@foxmail.com 吴克河 博士,教授.主要研究方向为电力信息安全. epuwkh@126.com 程瑞 博士.主要研究方向为电力信息安全. ahchengrui@126.com

Abstract: Containers are widely used in cloud computing due to their lightweight, flexibility, and ease of deployment, making them an indispensable technology. However, they also face security concerns due to their shared kernel and weaker resource isolation compared to virtual machines. Based on attention mechanism and convolutional neural network, this paper proposes a method of process anomaly detection in container based on system call sequence, which uses the data generated by container process operation to analyze and judge the abnormal behavior of process. The experimental results on public datasets and simulated attack scenarios show that this method can detect anomalies in the behavior of processes within containers, and is higher in accuracy and precision than comparison methods such as random forest and LSTM.

Key words: system call, container, anomaly detection, deep learning, attention mechanism

摘要: 容器因为其轻量、灵活和便于部署等优点被广泛使用,成为云计算不可或缺的技术,但也因为其共享内核、相对虚拟机更弱的资源隔离的特性受到安全性方面的担忧.基于注意力机制和卷积神经网络提出一种基于系统调用序列的容器内进程异常检测方法,使用容器进程运行产生的数据对进程行为进行异常分析判断.在公开数据集和模拟攻击场景下的实验结果表明,该方法能检测出容器内进程行为的异常,并且在精确率、准确率等指标上高于随机森林、LSTM等对比方法.

关键词: 系统调用, 容器, 异常检测, 深度学习, 注意力机制

CLC Number: