[1]Dharmapurikar S, Krishnamurthy P, Sproull T, et al. Deep packet inspection using parallel bloom filters[C] Proc of the 11th Symp on High Performance Interconnects. Piscataway, NJ: IEEE, 2003: 4451[2]Sherry J, Lan C, Popa R A, et al. Blindbox: Deep packet inspection over encrypted traffic[C] Proc of the 2015 ACM Conf on Special Interest Group on Data Communication. New York: ACM, 2015: 213226[3]Roesch M. Snort: Lightweight intrusion detection for networks[C] Proc of the 13th USENIX Conf on System Administration. Berkeley, CA: USENIX Association, 1999: 229238[4]Day D, Burns B. A performance analysis of snort and suricata network intrusion detection and prevention engines[C] Proc of the 5th Int Conf on Digital Society, Gosier, Guadeloupe. 2011: 187192[5]谢峥, 路广平, 付安民. 一种可扩展的实时多步攻击场景重构方法[J]. 信息安全研究, 2023, 9(12): 11731179[6]Anderson B, Mcgrew D. Identifying encrypted malware traffic with contextual flow data[C] Proc of the 2016 ACM Workshop on Artificial Intelligence and Security (AISec’16). New York: ACM, 2016: 3546[7]Anderson B, Mcgrew D. Machine learning for encrypted malware traffic classification: Accounting for noisy labels and nonstationarity[C] Proc of the 23rd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2017: 17231732[8]Wang W, Zhu M, Zeng X, et al. Malware traffic classification using convolutional neural network for representation learning[C] Proc of the 2017 Int Conf on Information Networking ICOIN. Piscataway, NJ: IEEE, 2017: 712717[9]Shiravi A, Shiravi H, Tavallaee M, et al. Toward developing a systematic approach to generate benchmark datasets for intrusion detection[J]. Computers & Security, 2012, 31(3): 357374[10]Dainotti A, Pescape A, Claffy K C. Issues and future directions in traffic classification[J]. IEEE Network, 2012, 26(1): 3540[11]Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 148[12]Lecun Y, Jackel L D, Bottou L, et al. Learning algorithms for classification: A comparison on handwritten digit recognition[J]. Neural Networks: The Statistical Mechanics Perspective, 1995, 261: 276276[13]Wang Z, Li M, Ou H, et al. A fewshot malicious encrypted traffic detection approach based on modelagnostic metalearning[JOL]. Security and Communication Networks, 2023 [20241012]. https:doi.org10.115520233629831[14]Github. Suricata git repository maintained by the OISF[EBOL]. [20241012]. https:github.comOISFsuricata.2021[15]Aceto G, Ciuonzo D, Montieri A, et al. Mobile encrypted traffic classification using deep learning: Experimental evaluation, lessons learned, and challenges[J]. IEEE Trans on Network and Service Management, 2019, 16(2): 445458[16]Aceto G, Ciuonzo D, Montieri A, et al. Toward effective mobile encrypted traffic classification through deep learning[J]. Neurocomputing, 2020, 409: 306315 |