Journal of Information Security Reserach ›› 2025, Vol. 11 ›› Issue (10): 907-.

Previous Articles     Next Articles

TCNGANbased Temporal Traffic Anomaly Detection

Li Chen, Lin Wei, and Xu Li
  

  1. (College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117)
  • Online:2025-10-15 Published:2025-10-16

基于TCNGAN的时序流量异常检测

李琛林维许力
  

  1. (福建师范大学计算机与网络空间安全学院福州350117)
  • 通讯作者: 许力 博士,教授,博士生导师.主要研究方向为网络与信息安全、无线网络与通信、通信网络中的智能信息. xuli@fjnu.edu.cn
  • 作者简介:李琛 硕士.主要研究方向为网络异常检测、复杂网络分析. 845687852@qq.com 林维 博士研究生.主要研究方向为网络异常检测、张量分析、复杂网络分析. linwei0612@126.com 许力 博士,教授,博士生导师.主要研究方向为网络与信息安全、无线网络与通信、通信网络中的智能信息. xuli@fjnu.edu.cn

Abstract: In recent years, generative adversarial networks have been widely used in the field of temporal anomaly detection. However, temporal data often has complex timedependence, and problems such as gradient vanishing and training instability are common in existing anomaly detection models. To this end, this paper proposes an unsupervised temporal traffic anomaly detection model based on the combination of temporal convolutional network (TCN) and GAN. The model uses TCN as the infrastructure of generator and discriminator, which can effectively capture the temporal features of the temporal traffic data. During the anomaly detection process, the model constructs an anomaly scoring function based on the reconstruction loss and discriminator loss, and performs anomaly judgment by setting a threshold, thus improving the accuracy of anomaly detection. To verify the performance of the proposed model, experiments are conducted on five different types of datasets. The results show that the average F1 score of the proposed model is 11.02% higher than that of the TAnoGAN model.

Key words: TCN, GAN, unsupervised, anomaly detection, temporal traffic

摘要: 近年来,生成对抗网络在时间序列异常检测领域得到了广泛应用.然而,时序数据往往具有复杂的时间依赖性,而现有异常检测方法中普遍存在梯度消失与训练不稳定等问题.为此,提出了一种基于时序卷积网络(temporal convolutional network, TCN)与生成对抗网络(generative adversarial network, GAN)相结合的无监督时序流量异常检测方法.该方法将TCN作为生成器和辨别器的基础架构,能够有效捕捉时序流量数据的时间特征.异常检测过程中,模型基于重构损失和判别损失构建异常评分函数,并通过设定阈值进行异常判断,从而提高了异常检测的准确性.为验证该模型的性能,在5类不同数据集上进行了实验.结果表明,该模型相比TAnoGAN模型的平均F1分数提高了11.02%.

关键词: 时序卷积网络, 生成对抗网络, 无监督, 异常检测, 时序流量

CLC Number: