[1]Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey[J]. ACM Computing Surveys, 2009, 41(3): 158[2]Pocher N, Zichichi M,Merizzi F, et al. Detecting anomalous cryptocurrency transactions: An AMLCFT application of machine learningbased forensics[J]. Electronic Markets, 2023, 33(1): 37[3]Fordal J M, Schjlberg P, Helgetun H, et al. Application of sensor data based predictive maintenance and artificial neural networks to enable Industry 4.0[J]. Advances in Manufacturing, 2023, 11(2): 248263[4]Li H, Li Y. Anomaly detection methods based on GAN: A survey[J]. Applied Intelligence, 2023, 53(7): 82098231[5]Choi K, Yi J, Park C, et al. Deep learning for anomaly detection in timeseries data: Review, analysis, and guidelines[J]. IEEE Access, 2021, 9: 120043120065[6]Goodfellow I, PougetAbadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139144[7]Bai S, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv preprint, arXiv:1803.01271, 2018[8]Kieu T, Yang B, Jensen C S. Outlier detection for multidimensional time series using deep neural networks[C] Proc of the 19th IEEE Int Conf on Mobile Data Management (MDM). Piscataway, NJ: IEEE, 2018: 125134[9]陈磊, 秦凯, 郝矿荣. 基于集成LSTMAE的时间序列异常检测方法[J]. 华中科技大学学报: 自然科学版, 2021, 49(11): 3540[10]He Y, Zhao J. Temporal convolutional networks for anomaly detection in time series[C] Journal of Physics: Conf Series. IOP Publishing, 2019, 1213(4): 042050[11]Nguyen H D, Tran K P, Thomassey S, et al. Forecasting and anomaly detection approaches using LSTM and LSTM autoencoder techniques with the applications in supply chain management[J]. International Journal of Information Management, 2021, 57: 102282[12]Pena E H M, de Assis M V O, Proena M L. Anomaly detection using forecasting methodsarima and hwds[C] Proc of the 32nd Int Conf on Chilean Computer Science Society (SCCC). Piscataway, NJ: IEEE, 2013: 6366[13]Jin M, Koh H Y, Wen Q, et al. A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2024, 46(12): 1046610485[14]Ma J, Perkins S. Timeseries novelty detection using oneclass support vector machines[C] Proc of the Int Joint Conf on Neural Networks. Piscataway, NJ: IEEE, 2003: 17411745[15]Teng M. Anomaly detection on time series[C] Proc of the 2010 IEEE Int Conf on Progress in Informatics and Computing. Piscataway, NJ: IEEE, 2010: 603608[16]Ahmed M, Mahmood A N, Hu J. A survey of network anomaly detection techniques[J]. Journal of Network and Computer Applications, 2016, 60: 1931[17]Cover T, Hart P. Nearest neighbor pattern classification[J]. IEEE Trans on Information Theory, 1967, 13(1): 2127[18]Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying densitybased local outliers[C] Proc of the 2000 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2000: 93104[19]MacQueen J. Some methods for classification and analysis of multivariate observations[C] Proc of the 5th Berkeley Symp on Mathematical Statistics and Probability. Berkeley, CA: University of California Press, 1967: 281297[20]Pang G, Shen C, Cao L, et al. Deep learning for anomaly detection: A review[J]. ACM Computing Surveys, 2021, 54(2): 138[21]Munir M, Siddiqui S A, Dengel A, et al. DeepAnT: A deep learning approach for unsupervised anomaly detection in time series[J]. IEEE Access, 2018, 7: 19912005[22]Su Y, Zhao Y, Niu C, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C] Proc of the 25th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining. New York: ACM, 2019: 28282837[23]Provotar O I, Linder Y M, Veres M M. Unsupervised anomaly detection in time series using LSTMbased autoencoders[C] Proc of the 2019 IEEE Int Conf on Advanced Trends in Information Theory (ATIT). Piscataway, NJ: IEEE, 2019: 513517[24]Kieu T, Yang B, Guo C, et al. Outlier detection for time series with recurrent autoencoder ensembles[COL] Proc of the 28th Int Joint Conf on Artificial Intelligence. 2019[20250922]. https:vbn.aau.dkenpublicationsoutlierdetectionfortimeserieswithrecurrentautoencoderense[25]Schlegl T, Seebck P, Waldstein S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C] Proc of Int Conf on Information Processing in Medical Imaging. Berlin: Springer, 2017: 146157[26]Zenati H, Foo C S, Lecouat B, et al. Efficient GANbased anomaly detection[J]. arXiv preprint, arXiv:1802.06222, 2018[27]Li D, Chen D, Jin B, et al. MADGAN: Multivariate anomaly detection for time series data with generative adversarial networks[C] Proc of Int Conf on Artificial Neural Networks. Berlin: Springer, 2019: 703716[28]Bashar M A, Nayak R. TAnoGAN: Time series anomaly detection with generative adversarial networks[C] Proc of the 2020 IEEE Symp Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2020: 17781785[29]Geiger A, Liu D, Alnegheimish S, et al. TadGAN: Time series anomaly detection using generative adversarial networks[C] Proc of the 2020 IEEE Int Conf on Big Data (Big Data). Piscataway, NJ: IEEE, 2020: 3343[30]田腾, 石茂林, 宋学官, 等. 基于滑动窗口的时间序列异常检测方法[J]. 仪表技术与传感器, 2021, 7: 112116[31]Lavin A, Ahmad S. Evaluating realtime anomaly detection algorithms—The Numenta anomaly benchmark[C] Proc of the 14th IEEE Int Conf on Machine Learning and Applications (ICMLA). Piscataway, NJ: IEEE, 2015: 3844[32]Hundman K, Constantinou V, Laporte C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C] Proc of the 24th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining. New York: ACM, 2018: 387395[33]Hsieh R J, Chou J, Ho C H. Unsupervised online anomaly detection on multivariate sensing time series data for smart manufacturing[C] Proc of the 12th IEEE Conf on ServiceOriented Computing and Applications (SOCA). Piscataway, NJ: IEEE, 2019: 9097[34]王德文, 潘晓飞, 赵红博. 基于改进生成对抗网络的时序数据异常检测[J]. 计算机工程与设计, 2024, 45(3): 762768 |