[1]Yadav S, Reddy A K, Reddy A L N, et al. Detecting algorithmically generated domainflux attacks with DNS traffic analysis[J]. IEEEACM TransNetw, 2012, 20(6): 16631677[2]Schiavoni S, Maggi F, Cavallaro L, et al. Phoenix: DGAbased botnet tracking and intelligence[C] Detection of Intrusions and Malware, and Vulnerability Assessment. Berlin: Springer, 2014: 192211[3]Woodbridge J, Anderson H S,Ahuja A, et al. Predicting domain generation algorithms with long shortterm memory networks[J]. arXiv preprint, arXiv:1611.00791, 2016[4]Yu B, Gray D L, Pan J, et al. Inline DGA detection with deep networks[C] Proc of the 2017 IEEE Int Conf on Data Min Workshops. Piscataway, NJ: IEEE, 2017: 683692 [5]LeCun Y, Bottou L, Bengio Y, et al. Gradientbased learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 22782324[6]Yu W, Rui P, Zuchao W, et al. A classification method based on CNNBiLSTM for difficult detecting DGA domain name[C] Proc of the 13th IEEE Int Conf on Electron Information and Emergency Communication (ICEIEC). Piscataway, NJ: IEEE, 2023[7]Namgung J, Son S, Moon Y. Efficient deep learning models for DGA domain detection[J]. Applied Sciences, 2021, 11(19): 8887881[8]Natarajan M, Dharani R, Murali S, et al. Performance analysis of DGAdriven botnets using artificial neural networks[C] Proc of the 10th Int Conf on Reliability Infocom Technologies and Optimization (ICRITO). Piscataway, NJ: IEEE, 2022[9]Tuan T A, Long H V, Taniar D. On detecting and classifying DGA botnets and their families[J]. Computers & Security, 2022, 113: 102549[10]Vranken H, Alizadeh H. Detection of DGAgenerated domain names with TFIDF[JOL]. Electronics, 2022 [20250305]. https:doi.org10.3390electronics11030414[11]Ning Y, Gao M, Yan W, et al. ABayesian optimizationbased LSTM model for DGA domain name identification approach[J]. Journal of Physics: Conference Series, 2022, 2303(1): 012015[12]Gers F A, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 24512472[13]Rumelhart D E, Hinton G E, Williams R J. Learning representations by backpropagating errors[J]. Nature, 1986, 323(6088): 533536[14]Elman J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179211[15]Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions[J]. International Journal of Uncertainty Fuzziness & Knowledgebased Systems, 1998, 6(2): 107116[16]Cambria E, Bebo W. Jumping NLP curves: A review of natural language processing research[J]. IEEE Computational Intellegence Magazine, 2014, 9(2): 4857[17]Ou X, Yan P, Zhang Y. Moving object detection method via ResNet18 with encoderdecoder structure in complex scenes[J]. IEEE Access, 2019, 7: 163856163868[18]Ahmed E, Yassin B, Ameen R, et al. A new cryptography algorithm based on ASCII code[C] Proc of the 19th Int Conf on Sciences of Electronics, Technologies of Information and Telecommunications. Piscataway, NJ: IEEE, 2019: 16[19]Bambenek J. OSINT feeds from Bambenek Consulting[EBOL]. 2019 [20250315]. http:osint.bambenekconsulting.comfeeds |