[1]Google. HTTPS encryption on the WebGoogle transparency report[EBIL]. [20240422]. https:transparencyreport.google.comhttpsoverview?hl=en[2]Sean G. Nearly half of malware now use TLS to conceal communications[NOL]. SOPHOS NEWS, (20210421) [20240801]. https:news.so phos.comenus20210421nearlyhalfofmalwarenowusetlstoconcealcommunications[3]elebi M, zbilen A, Yavanolu U. A comprehensive survey on deep packet inspection for advanced network traffic analysis: Issues and challenges[J]. Nide mer Halisdemir niversitesi Mühendislik Bilimleri Dergisi, 2023, 12(1): 129[4]骆子铭, 许书彬, 刘晓东. 基于机器学习的TLS恶意加密流量检测方案[J]. 网络与信息安全学报, 2020, 6(1): 7783[5]Dai R, Gao C, Lang B, et al. SSL malicious traffic detection based on multiview features[C] Proc of the 9th Int Conf on Communication and Network Security. New York: ACM, 2019: 4046[6]Liu J Y, Zeng Y Z, Shi J Y, et al. MalDetect: A structure of encrypted malware traffic detection[J]. Comput Mater Continua, 2019, 60(1): 721739[7]Fu Z, Liu M, Qin Y, et al. Encrypted malware traffic detection via graphbased network analysis[C] Proc of the 25th Int Symp on Research in Attacks, Intrusions and Defenses. New York: ACM, 2022: 495509[8]Lin X, Xiong G, Gou G, et al. ETBERT: A contextualized datagram representation with pretraining transformers for encrypted traffic classification[C] Proc of the ACM Web Conf 2022. New York: ACM, 2022: 633642[9]Kipf T N, Welling M. Semisupervised classification with graph convolutional networks[J]. arXiv preprint, arXiv:1609.02907, 2016[10]Shi Z,Luktarhan N, Song Y, et al. BFCN: A novel classification method of encrypted traffic based on BERT and CNN[J]. Electronics, 2023, 12(3): 516532[11]Devlin J, Chang M W, Lee K, et al. Bert: Pretraining of deep bidirectional transformers for language understanding[J]. arXiv preprint, arXiv:1810.04805, 2018[12]Achiam J, Adler S, Agarwal S, et al. GPT4 technical report[J]. arXiv preprint, arXiv:2303.08774, 2023[13]杨宏宇, 马建辉, 侯旻, 等. 基于多模态对比学习的代码表征增强预训练方法[J]. 软件学报, 2024, 35(4): 16011617[14]Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77(12): 354377[15]Abdul Raheem M, Oladipo I D, Imoize A L, et al. Machine learning assisted snort and zeek in detecting DDoS attacks in softwaredefined networking[J]. International Journal of Information Technology, 2024, 16(3): 16271643[16]Guo J, Sang Y, Chang P, et al. MGEL: A robust malware encrypted traffic detection method based on ensemble learning with multigrained features[C] Proc of Int Conf on Computational Science. Berlin: Springer, 2021: 195208[17]Shah S R, Qadri S, Bibi H, et al. Comparing inception V3, VGG 16, VGG 19, CNN, and ResNet 50: A case study on early detection of a rice disease[J]. Agronomy, 2023, 13(6): 16331646[18]Sumayli A. Development of advanced machine learning models for optimization of methyl ester biofuel production from papaya oil: Gaussian process regression (GPR), multilayer perceptron (MLP), and Knearest neighbor (KNN) regression models[J]. Arabian Journal of Chemistry, 2023, 16(7): 104833104846[19]Shiri F M, Perumal T, Mustapha N, et al. A comprehensive overview and comparative analysis on deep learning models: CNN, RNN, LSTM, GRU[J]. arXiv preprint, arXiv:2305.17473, 2023[20]DataCon社区. DataCon开放数据集DataCon2020加密恶意流量数据集方向开放数据集[DBOL]. [20211111]. https:datacon.qianxin.comopendataopenpage?resources Id=6
|