[1]Tokunaga R S. Following you home from school: A critical review and synthesis of research on cyberbullying victimization[J]. Computersin Human Behavior, 2010, 26(3): 277287[2]厉贤斌, 崔晨, 翁理想, 等. 基于跨层连接的多通道DBiSAC网络欺凌检测模型[J]. 中国计量大学学报, 2023, 34(1): 92100[3]宋宇琦, 高旻, 李骏东, 等. 网络欺凌检测综述[J]. 电子学报, 2020, 48(6): 12201229[4]Dadvar M, De Jong F. Cyberbullying detection: A step toward a safer internet yard[C] Proc of the 21st Int Conf on World Wide Web. New York: ACM, 2012: 121126[5]Kontostathis A, Reynolds K, Garron A, et al. Detecting cyberbullying: Query terms and techniques[C] Proc of the 5th Annual ACM Web Science Conference. New York: ACM, 2013: 195204[6]Mehdad Y, Tetreault J. Do characters abuse more than words?[C] Proc of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue. Stroudsburg, PA: ACL, 2016: 299303[7]Dani H, Li J, Liu H. Sentiment informed cyberbullying detection in social media[C] Proc of Joint European Conf on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2017: 5267[8]谢静, 刘玉文. 基于LDA模型和卡方检验的网络暴力话题挖掘方法[J]. 西昌学院学报: 自然科学版, 2022, 36(4): 97103[9]Chavan V S, Shylaja S S. Machine learning approach for detection of cyberaggressive comments by peers on social media network[C] Proc of the 2015 Int Conf on Advances in Computing, Communications and Informatics (ICACCI). Piscataway, NJ: IEEE, 2015: 23542358[10]任思远, 王旭阳, 李也桐. 多模型融合的网络暴力识别[J]. 网络安全技术与应用, 2023(11): 3133[11]Ajlan M A, Ykhlef M. Optimized twitter cyberbullying detection based on deep learning[C] Proc of the 21st Saudi Computer Society National Computer Conference. Piscataway, NJ: IEEE, 2018: 15[12]Zhang Z, Robinson D, Tepper J. Detecting hate speech on twitter using a convolutionGRU based deep neural network[C] Proc of European Semantic Web Conference. Berlin: Springer, 2018: 745760[13]柳致远, 范永胜, 张万里, 等. 常见中文社交平台中网络欺凌语言的检测分析[J]. 西南师范大学学报: 自然科学版, 2021, 46(8): 8694[14]叶水欢, 葛寅辉, 陈波, 等. 基于ELMoTextCNN的网络欺凌检测模型[J]. 信息安全研究, 2023, 9(9): 868876[15]Kumari K, Singh J P, Dwivedi Y K, et al. Towards Cyberbullyingfree social media in smart cities: A unified multimodal approach[J]. Soft Computing, 2020, 24(15): 1105911070[16]Kumari K, Singh J P. Identification of cyberbullying on multimodal social media posts using genetic algorithm[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(2): e3907[17]Paul S, Saha S, Hasanuzzaman M. Identification of cyberbullying: A deep learning based multimodal approach[J]. Multimedia Tools and Applications, 2022, 81: 2698927008[18]王腾, 张大伟, 王利琴, 等. 多模态特征自适应融合的虚假新闻检测[J]. 计算机工程与应用, 2024, 60(13): 102112[19]蒋保洋, 但志平, 董方敏, 等. 基于双预训练Transformer和交叉注意力的多模态谣言检测[J]. 国外电子测量技术, 2023, 42(4): 149157[20]施运梅, 袁博, 张乐, 等. IMTS: 融合图像与文本语义的虚假评论检测方法[J]. 数据分析与知识发现, 2022, 6(8): 8496[21]谷学汇. 基于信息融合算法的暴力视频内容识别[J]. 济南大学学报: 自然科学版, 2019, 33(3): 224228[22]王浩, 张生伟, 徐恺. 应用于图像匹配的实时自适应RANSAC算法研究[J]. 电光与控制, 2020, 27(2): 9093, 97[23]周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用:研究进展与挑战[J]. 电子与信息学报, 2022, 44(1): 149167[24]Behar N, Shrivastava M. ResNet50based effective model for breast cancer classification using histopathology images[J]. Computer Modeling in Engineering & Sciences, 2022, 130(2): 823839[25]Siva P, Sreedhar S, Nandhagopal N. Classification similarity network model for image fusion using ResNet50 and GoogLeNet[J]. Intelligent Automation & Soft Computing, 2022, 31(3): 13311344[26]逯登科, 罗亦泳, 张紫怡, 等. 基于ResNet50与通道注意力的遥感图像场景分类[J]. 江西科学, 2024, 42(2): 396404 |