[1]刘晓迁, 许飞, 马卓, 等. 联邦学习中的隐私保护技术研究[J]. 信息安全研究, 2024, 10(3): 194201[2]Jin X, Zhang H, Li X, et al. Confusedmoduloprojectionbased somewhat homomorphic encryption—Cryptosystem, library, and applications on secure smart cities[J]. IEEE Internet of Things Journal, 2020, 8(8): 63246336[3]Li X, Gao H, Zhang J, et al. GPU accelerated full homomorphic encryption cryptosystem, library and applications for iot systems[J]. IEEE Internet of Things Journal, 2023, 11(3): 68936903[4]Bonawitz K, Ivanov V, Kreuter B, et al. Practical secure aggregation for privacypreserving machine learning[C] Proc of the 2017 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2017: 11751191[5]Truex S, Baracaldo N, Anwar A, et al. A hybrid approach to privacypreserving federated learning[C] Proc of the 12th ACM Workshop on Artificial Intelligence and Security. New York: ACM, 2019: 111[6]Zhang J, Chen B, Yu S, et al. PEFL: A privacyenhanced federated learning scheme for big data analytics[C] Proc of 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway, NJ: IEEE, 2019: 16[7]Kanagavelu R, Li Z, Samsudin J, et al. Twophase multiparty computation enabled privacypreserving federated learning[C] Proc of the 20th IEEEACM Int Symp on Cluster, Cloud and Internet Computing (CCGRID). Piscataway, NJ: IEEE, 2020: 410419[8]Rivest R L, Adleman L, Dertouzos M L. On data banks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978, 4(11): 169180[9]Gentry C. Fully homomorphic encryption using ideal lattices[C] Proc of the 41st Annual ACM Symp on Theory of computing. New York: ACM, 2009: 169178[10]Brakerski Z, Gentry C, Vaikuntanathan V. (Leveled) fully homomorphic encryption without bootstrapping[J]. ACM Trans on Computation Theory, 2014, 6(3): 136[11]李雅硕, 龙春, 魏金侠, 等. 基于同态加密的人脸识别隐私保护方法[J]. 信息安全研究, 2023, 9(9): 843850[12]Ore O. Number Theory and Its History[M]. New York: Courier Corporation, 1988[13]Aono Y, Hayashi T, Wang L, et al. Privacypreserving deep learning via additively homomorphic encryption[J]. IEEE Trans on Information Forensics and Security, 2017, 13(5): 13331345[14]McMahan B, Moore E, Ramage D, et al. Communicationefficient learning of deep networks from decentralized data[COL]. 2017 [20240424]. https:proceedings.mlr.pressv54mcmahan17a.html |