[1]王颖洁, 张程烨, 白凤波, 等. 中文命名实体识别研究综述[J]. 计算机科学与探索, 2023, 17(2): 324341[2]李冬梅, 罗斯斯, 张小平, 等. 命名实体识别方法研究综述[J]. 计算机科学与探索, 2022, 16(9): 19541968[3]Guo H, Xing Z, Chen S, et al. Key aspects augmentation of vulnerability description based on multiple security databases[C] Proc of the 45th IEEE Annual Computers, Software, and Applications Conference. Piscataway, NJ: IEEE, 2021: 10201025[4]Hashemi C F, Ray I. Automation of vulnerability information extraction using transformerbased language models[C] Proc of the 27th European Symp on Research in Computer Security. Berlin: Springer, 2022: 645665[5]Li X, Zhang H, Zhou X H. Chinese clinical named entity recognition with variant neural structures based on BERT methods[J]. Journal of Biomedical Informatics, 2020, 107: 103422103428[6]Jia C, Shi Y, Yang Q, et al. Entity enhanced BERT pretraining for Chinese NER[C] Proc of the 2020 Conf on Empirical Methods in Natural Language. Stroudsburg, PA: ACL, 2020: 63846396[7]Yang G, Dineen S, Lin Z, et al. Fewsample named entity recognition for security vulnerability reports by finetuning pretrained language models[C] Proc of the 2021 Deployable Machine Learning for Security Defense. Berlin: Springer, 2021: 5578[8]Peng D L, Wang Y R, Liu C, et al. TLNER: A transfer learning model for Chinese named entity recognition[J]. Information Systems Frontiers, 2020, 22(6): 12911304[9]Sumoto K, Kanakogi K, Washizaki H, et al. Automatic labeling of the elements of a vulnerability report CVE with NLP[C] Proc of the 23rd Int Conf on Information Reuse and Integration for Data Science. Piscataway, NJ: IEEE, 2022: 164165[10]Wang Y, Sun Y, Ma Z, et al. Named entity recognition in Chinese medical literature using pretraining models[J]. Scientific Programming, 2020, 2020(1): 19[11]Chen S, Pei Y, Ke Z, et al. Lowresource named entity recognition via the pretraining model[J]. Symmetry, 2021, 13(5): 786800[12]Lafferty J, McCallum A, Pereira F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C] Proc of the 18th Int Conf on Machine Learning. San Francisco: Morgan Kaufmann, 2001[13]Tai W, Kung H T, Dong X L, et al. exBERT: Extending pretrained models with domainspecific vocabulary under constrained training resources[C] Proc of the 2020 Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2020: 14331439[14]Egger R. Text Representations and Word Embeddings: Vectorizing Textual Data[M] Applied Data Science in Tourism: Interdisciplinary Approaches, Methodologies, and Applications. Berlin: Springer, 2022: 335361[15]Wang R, Yu T, Zhao H, et al. Fewshot classincremental learning for named entity recognition[C] Proc of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2022: 571582[16]Xingyue C, Liping N, Zhiwei N. Extracting financial events with ELECTRA and partofspeech[J]. Data Analysis and Knowledge Discovery, 2021, 5(7): 3647
|