Journal of Information Security Reserach ›› 2025, Vol. 11 ›› Issue (5): 394-.

    Next Articles

A Blackbox Antiforensics Method of GANgenerated Faces Based on #br# Invertible Neural Network#br#

Chen Beijing1,2, Feng Yifan1, and Li Yuru1   

  1. 1(Engineering Research Center of Digital Forensics Ministry of Education(Nanjing University of Information Science and Technology), Nanjing 210044)
    2(Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(Nanjing University of Information Science and Technology), Nanjing 210044)
  • Online:2025-06-03 Published:2025-06-03

基于可逆神经网络的黑盒GAN生成人脸反取证方法

陈北京1,2冯逸凡1李玉茹1   

  1. 1(数字取证教育部工程研究中心(南京信息工程大学)南京210044)
    2(江苏省大气环境与装备技术协同创新中心(南京信息工程大学)南京210044)
  • 通讯作者: 陈北京 博士,教授,博士生导师.主要研究方向为多媒体内容安全、彩色图像处理以及模式识别. nbutimage@126.com
  • 作者简介:陈北京 博士,教授,博士生导师.主要研究方向为多媒体内容安全、彩色图像处理以及模式识别. nbutimage@126.com 冯逸凡 硕士研究生.主要研究方向为人脸深度伪造防御. fyf200613@qq.com 李玉茹 硕士.主要研究方向为人脸深度伪造反取证. 3246863022@qq.com

Abstract: Generative adversarial network GANgenerated faces forensics models are used to distinguish real faces and GANgenerated faces. But due to the fact that forensics models are susceptible to adversarial attacks, the antiforensics techniques for GANgenerated faces have emerged. However, existing antiforensic methods rely on whitebox surrogate models, which have limited transferability. Therefore, a blackbox method based on invertible neural network (INN) is proposed for GANgenerated faces antiforensics in this paper. This method embeds the features of real faces into GANgenerated faces through the INN, which enables the generated antiforensics faces to disturb forensics models. Meanwhile, the proposed method introduces a feature loss during training to maximize the cosine similarity between the features of the antiforensics faces and the real faces, further improving the attack performance of antiforensics faces. Experimental results demonstrate that, under the scenarios where no whitebox models are involved, the proposed method has good attack performance against eight GANgenerated faces forensics models with better performance than seven comparative methods, and can generate highquality antiforensics faces.

Key words: adversarial attack, invertible neural network, GANgenerated faces, antiforensics, blackbox

摘要: 生成对抗网络(generative adversarial network, GAN)生成的人脸取证模型用于区分真实人脸和GAN生成人脸.但由于其易受对抗攻击影响,GAN生成人脸反取证技术应运而生.然而,现有反取证方法依赖白盒代理模型,迁移性不足.因此,提出了一种基于可逆神经网络(invertible neural network, INN)的黑盒GAN生成人脸反取证方法.该方法通过INN将真实人脸特征嵌入GAN生成人脸中,使生成的反取证人脸能够误导取证模型.同时,在训练中引入特征损失,通过最大化反取证人脸特征与真实人脸特征间的余弦相似度,进一步提升反取证性能.实验结果表明,在不依赖任何白盒模型的场景下,该方法对8种取证模型都有良好的攻击性能,优于对比的7种方法,且可以生成高视觉质量的反取证人脸.

关键词: 对抗攻击, 可逆神经网络, GAN生成人脸, 反取证, 黑盒

CLC Number: