参考文献
[1]Moser A, Kruegel C, Kirda E. Limits of static analysis for malware detection[C] Proc of the 23rd Annual Computer Security Applications Conference (ACSAC 2007). Piscataway, NJ: IEEE, 2007: 421430[2]Amer E, ElSappagh S, Hu J W. Contextual identification of windows malware through semantic interpretation of API call sequence[J]. Applied Sciences, 2020, 10(21): 7673[3]Ucci D, Aniello L, Baldoni R. Survey of machine learning techniques for malware analysis[J]. Computers & Security, 2019, 81: 123147[4]Pekta瘙塂 A, Acarman T. Malware classification based on API calls and behaviour analysis[J]. IET Information Security, 2018, 12(2): 107117[5]Soni H, Kishore P, Mohapatra D P. Opcode and API based machine learning framework for malware classification[C] Proc of the 2nd Int Conf on Intelligent Technologies (CONIT). Piscataway, NJ: IEEE, 2022: 17[6]Garg V, Yadav R K. Malware detection using multilevel ensemble supervised learning[C] Proc of the 4th Int Conf on Communication and Intelligent Systems: Proceedings of ICCIS 2019. Berlin: Springer, 2020: 219231[7]乔延臣, 姜青山, 古亮, 等. 基于汇编指令词向量与卷积神经网络的恶意代码分类方法研究[J]. 信息网络安全, 2019 (4): 2028[8]唐永旺, 刘欣. 基于BiLSTM和自注意力的恶意代码检测方法[J]. 计算机应用与软件, 2021, 38(3): 327333[9]Wu Xuan, Song Yafei. An efficient malware classification method based on the AIFSIDL and multifeature fusion[J]. Information, 2022, 13(12): 119[10]Lv Z, Qiao L, Singh A K, et al. Finegrained visual computing based on deep learning[J]. ACM Trans on Multimidia Computing Communications and Applications, 2021, 17(1s): 119[11]Liu Min, Li Hailong. Malicious code classification method based on API sequence and textCNN[C] Proc of Int Conf on Cloud Computing, Internet of Things, and Computer Applications (CICA 2022). Washington: SPIE, 2022: 190199[12]陈克. 基于深度学习的恶意代码检测技术研究[D]. 北京: 北京交通大学, 2020[13]Kale A S, Pandya V, Di Troia F, et al. Malware classification with Word2Vec, HMM2Vec, BERT, and ELMo[J]. Journal of Computer Virology and Hacking Techniques, 2022, 19: 116[14]Mahdavifar S, Alhadidi D, Ghorbani A A. Effective and efficient hybrid android malware classification using pseudolabel stacked autoencoder[J]. Journal of Network and Systems Management, 2022, 30: 134[15]郑锐, 汪秋云, 傅建明, 等. 一种基于深度学习的恶意软件家族分类模型[J]. 信息安全学报, 2020, 5(1): 19
|