[1]Singh S, Sharma C, Agarwal S, et al. The detection and analysis of fake news using machine learning[C] Proc of 2022 Int Conf on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP). Piscataway, NJ: IEEE, 2022: 1924[2]陆佳丽. 基于BertTextCNN的开源威胁情报文本的多标签分类方法[J]. 信息安全研究, 2024, 10(8): 760768[3]Wani A, Joshi I, Khandve S, et al. Evaluating deep learning approaches for covid19 fake news detection[G] CCIS 1402: Combating Online Hostile Posts in Regional Languages During Emergency Situation. Berlin: Springer, 2021: 153163[4]江波. 完善数据安全治理范式 促进人工智能产业发展[J]. 信息安全研究, 2024, 10(8): 776779[5]Huang Wenxi, Zhao Zhangyi, Chen Xiaojun, et al. Multimodal Chinese fake news detection[C] Proc of 2023 IEEE Int Conf on Data Mining Workshops (ICDMW). Piscataway, NJ: IEEE, 2023: 109117[6]Jin Zhiwei, Cao Juan, Guo Han, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C] Proc of the 25th ACM Int Conf on Multimedia. New York: ACM, 2017: 795816[7]Nan Qiong, Cao Juan, Zhu Yongchun, et al. MDFEND: Multidomain fake news detection[C] Proc of the 30th ACM Int Conf on Information & Knowledge Management. New York: ACM, 2021: 33433347[8]Ma Jing, Gao Wei, Mitra P, et al. Detecting rumors from microblogs with recurrent neural networks[C] Proc of the 25th Int Joint Conf on Artificial Intelligence (IJCAI 2016). 2016: 38183824[9]Wang Jinguang, Qian Shengsheng, Hu Jun, et al. Positive unlabeled fake news detection via multimodal masked transformer network[J]. IEEE Trans on Multimedia, 2023, 26: 234244[10]Zhang Wenjia, Gui Lin, He Yulan. Supervised contrastive learning for multimodal unreliable news detection in COVID19 pandemic[C] Proc of the 30th ACM Int Conf on Information & Knowledge Management. New York: ACM, 2021: 36373641[11]Zou Heqing, Shen Meng, Chen Chen, et al. UniSMMC: Multimodal classification via unimodalitysupervised multimodal contrastive learning[J]. arXiv preprint, arXiv:2305.09299, 2023[12]Devlin J. Bert: Pretraining of deep bidirectional transformers for language understanding[J]. arXiv preprint, arXiv:1810.04805, 2018[13]Dosovitskiy A. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv preprint, arXiv:2010.11929, 2020[14]Wu Yang, Zhan Pengwei, Zhang Yunjian, et al. Multimodal fusion with coattention networks for fake news detection[C] Proc of the Association for Computational Linguistics(ACLIJCNLP 2021). Stroudsburg, PA: ACL, 2021: 25602569 |