[1]谭作文, 张连福. 机器学习隐私保护研究综述[J]. 软件学报, 2020, 31(7): 21272156[2]Avrim B, Cynthia D, Frank M, et al. Practical privacy: The SuL, Q framework[C] Proc of the 24th ACM SIGACTSIGMODSIGART Symp on Principles of Database System. New York: ACM, 2005: 128138[3]李杨, 郝志峰, 温雯, 等. 差分隐私保Kmeans聚类方法研究[J]. 计算机科学, 2013, 40(3): 287290[4]Su Dong, Cao Jianneng, Li Ninghui, et al. Differentially private kmeans clustering[C] Proc of the 6th ACM Conf on Data and Application Security and Privacy. New York: ACM, 2016: 2637[5]郭如敏, 陈学斌, 单丽洋. 差分隐私Kmeans聚类算法改进[J]. 哈尔滨理工大学学报, 2024, 29(4): 2128[6]马文博, 巫朝霞. 基于差分隐私保护的二分k均值聚类算法研究[J]. 智能计算机与应用, 2023, 13(2): 155160, 164[7]傅彦铭, 李振铎. 基于拉普拉斯机制的差分隐私保护Kmeans++聚类算法研究[J]. 信息网络安全, 2019, 18(2): 4352[8]石江南, 彭长根, 谭伟杰. Spark框架下支持差分隐私保护的Kmeans++聚类方法[J]. 信息安全研究, 2024, 10(8): 712718[9]Kong Yuting, Qian Yurong, Tan Fuxiang, et al. CVDP kmeans clustering algorithm for differential privacy based on coefficient of variation[J]. Journal of Intelligent and Fuzzy Systems, 2022, 43(5): 60276045[10]Ni Tianjiao, Qiao Minghao, Chen Zhili, et al. Utilityefficient differentially private Kmeans clustering based on cluster merging[J]. Neurocomputing, 2021, 42(4): 205214[11]Zhang Yaling, Liu Na, Wang Shangping. A differential privacy protecting Kmeans clustering algorithm based on contour coefficients[J]. Plos One, 2018, 13(11): 206218[12]黄保华, 程琪, 袁鸿, 等. 一种差分隐私Kmeans聚类算法的隐私预算分配方案[J]. 网络空间安全, 2020, 11(11): 1119[13]Zhang Yaling, Han Jin. Differential privacy fuzzy Cmeans clustering algorithm based on gaussian kernel function[J]. Plos One, 2021, 16(3): e0248737[14]Wu Fuyu, Du Mingjing, Zhi Qiang. Density based clustering with differential privacy[J]. Information Sciences, 2024, 68(1): 121129[15]Zhang En, Li Huimin, Huang Yuchen, et al. Practical multiparty private collaborative Kmeans clustering[J]. Neurocomputing, 2022, 46(7): 256265[16]Uri S. Locally private Kmeans clustering[J]. Journal of Machine Learning Research, 2021, 22(13): 548559[17]朱勇. 基于差分隐私的聚类算法相关研究[D]. 南京: 南京邮电大学, 2021[18]杨舒丹, 李男, 郑文娟, 等. 基于Tsallis熵的近似差分隐私Kmeans算法[J]. 信息安全学报, 2023, 8(4): 113125[19]张国兴, 赵俊杰, 杨杰. 融合Kmeans与指数机制的直方图发布算法[J]. 科学技术创新, 2022, 11(21): 9295[20]Dwork C, McSherry F, Nissim K, et al. Calibrating noise to sensitivity in private data analysis[J]. Journal of Privacy and Confidentiality, 2017, 7(3): 1751 |