[1]Elsherief M, Ziems C, Muchlinski D, et al. Latent hatred: A benchmark for understanding implicit hate speech[C] Proc of the 18th Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2021: 345363[2]Wiegand M, Ruppenhofer J, Kleinbauer T. Detection of abusive language: The problem of biased datasets[C] Proc of the 17th Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2019: 602608[3]Breitfeller L, Ahn E, Jurgens D, et al. Finding microaggressions in the wild: A case for locating elusive phenomena in social media posts[C] Proc of the 16th Conf on Empirical Methods in Natural Language Processing and the 9th Int Joint Conf on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 16641674[4]Fortuna P, SolerCompany J, Wanner L. How well do hate speech, toxicity, abusive and offensive language classification models generalize across datasets?[J]. Information Processing & Management, 2021, 58(3): 102524[5]Field A, Tsvetkov Y. Unsupervised discovery of implicit gender bias[C] Proc of the 17th Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 596608[6]Wiegand M, Eder E, Kampfmeier J, et al. Euphemistic abuse—A new dataset and classification experiments for implicitly abusive language[C] Proc of the 20th Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2023: 1628016297[7]Nejadgholi I, Fraser K, Kiritchenko S. Improving generalizability in implicitly abusive language detection with concept activation vectors[C] Proc of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2022: 55175529[8]Giorgi J, Nitski O, Wang B, et al. DeCLUTR: Deep contrastive learning for unsupervised textual representations[C] Proc of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Int Joint Conf on Natural Language Processing. Stroudsburg, PA: ACL, 2021: 879895[9]Rethmeier N, Augenstein I. A primer on contrastive pretraining in language processing: Methods, lessons learned, and perspectives[J]. ACM Computing Surveys, 2023, 55(10): 117[10]Gunel B, Du Jingfei, Conneau A, et al. Supervised contrastive learning for pretrained language model finetuning[C] Proc of the 9th Int Conf on Learning Representations. Washington: ICLR, 2020[11]Suresh V, Ong D. Not all negatives are equal: Labelaware contrastive loss for finegrained text classification[C] Proc of the 18th Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2021: 43814394[12]Kim Y, Park S, Han Y S. Generalizable implicit hate speech detection using contrastive learning[C] Proc of the 29th Int Conf on Computational Linguistics. Stroudsburg, PA: ACL, 2022: 66676679[13]Deng Jiawen, Chen Zhuang, Sun Hao, et al. Enhancing offensive language detection with data augmentation and knowledge distillation[J]. Research, 2023, 6: 112[14]Zhang Linhao, Jin Li, Sun Xian, et al. TOT: Topologyaware optimal transport for multimodal hate detection[C] Proc of the 37th AAAI Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2023: 48844892[15]Ghosh S, Suri M, Chiniya P, et al. CoSyn: Detecting implicit hate speech in online conversations using a context synergized hyperbolic network[C] Proc of the 20th Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2023: 61596173[16]Jiang Aiqi, Yang Xiaohan, Liu Yang, et al. SWSR: A Chinese dataset and lexicon for online sexism detection[J]. Online Social Networks and Media, 2022, 27: 100182[17]Deng Jiawen, Zhou Jingyan, Sun Hao, et al. COLD: A benchmark for chinese offensive language detection[C] Proc of the 19th Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2022: 1158011599[18]Zhou Jingyan, Deng Jiawen, Mi Fei, et al. Towards identifying social bias in dialog systems: Framework, dataset, and benchmark[J]. arXiv preprint, arXiv:2202.08011, 2022[19]Zhao Xiangyun, Vemulapalli R, Mansfield P A, et al. Contrastive learning for label efficient semantic segmentation[C] Proc of the 36th IEEE Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2021: 1060310613[20]Zhang Ziqi, Robinson D, Tepper J. Detecting hate speech on Twitter using a convolution—GRU based deep neural network[C] Proc of the 15th Int Conf on Semantic Web. Berlin: Springer, 2018: 745760[21]Lu Junyu, Xu Bo, Zhang Xiaokun, et al. Facilitating finegrained detection of Chinese toxic language: Hierarchical taxonomy, resources, and benchmarks[C] Proc of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2023: 1623516250 |