[1]孙海丽, 龙翔, 韩兰胜, 等. 工业物联网异常检测技术综述[J]. 通信学报, 2022, 43(3): 196210[2]Zikria Y B, Ali R, Afzal M K, et al. Nextgeneration Internet of things (IoT): Opportunities, challenges, and solutions[J]. Sensors, 2021, 21(4): 1174[3]Hazman C, Guezzaz A, Benkirane S, et al. lIDSSIoEL: Intrusion detection framework for IoTbased smart environments security using ensemble learning[J]. Cluster Computing, 2023, 26(6): 40694083[4]Mohyeddine M, Guezzaz A, Benkirane S, et al. An efficient network intrusion detection model for IoT security using KNN classifier and feature selection [J]. Multimedia Tools and Applications, 2023, 82(15): 2361523633[5]Nguyen H, Kashef R. TSIDS: Trafficaware selfsupervised learning for IoT network intrusion detection[J]. KnowledgeBased Systems, 2023, 279: 110966[6]McMahan H B, Moore E, Ramage D, et al. Communicationefficient learning of deep networks from decentralized data[J]. arXiv preprint, arXiv:1602.05629, 2016[7]Li Beibei, Wu Yuhao, Song Jiarui, et al. DeepFed: Federated deep learning for intrusion detection in industrial cyberphysical systems[J]. IEEE Trans on Industrial Informatics, 2020, 17(8): 56155624[8]Singh P, Gaba G S, Kaur A, et al. Dewcloudbased hierarchical federated learning for intrusion detection in IoMT[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 27(2): 722731[9]Wu Wentai, He Ligang, Lin Weiwei, et al. SAFA: A semiasynchronous protocol for fast federated learning with low overhead[J]. IEEE Trans on Computers, 2021, 70(5): 655668[10]金志刚, 丁禹, 武晓栋. 融合梯度差分的双边校正联邦入侵检测算法 [J]. 信息网络安全, 2024, 24(2): 293302[11]高莹, 陈晓峰, 张一余, 等. 联邦学习系统攻击与防御技术研究综述[J]. 计算机学报, 2023, 46(9): 17811805[12]Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module[C] Proc of the 15th European Conf on Computer Vision. Berlin: Springer, 2018: 319[13]Li Qinbin, He Bingsheng, Song D. Modelcontrastive federated learning[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2021: 1071310722[14]Meidan Y, Bohadana M, Mayhov Y, et al. NBaIoT—Networkbased detection of IoT botnet attacks using deep autoencoders[J]. IEEE Pervasive Computing, 2018, 17(3): 1222[15]Neto E C P, Dadkhah S, Ferreira R, et al. CICIoT2023: A realtime dataset and benchmark for largescale attacks in IoT environment[J]. Sensors, 2023, 23(13): 5941 |