[1]Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey[J]. ACM Computing Surveys, 2009, 41(3): 158[2]Choi W, Joo, K, Jo H J, et al. VoltageIDS: Lowlevel communication characteristics for automotive intrusion detection system[J]. IEEE Trans on Information Forensics and Security, 2018, 13(8): 21142129[3]于明明,宁玉桥, 沈诗雯, 等. 汽车网络安全实践性探索与研究[J]. 信息安全研究, 2023, 9(5): 476481[4]张晴晴, 田潇, 田锦. 基于区块链预言机的车联网可信身份方案研究[J]. 信息安全研究, 2023, 9(2): 120126[5]Santana E, Hotz G. Learning a driving simulator[J]. arXiv preprint, arXiv:1608.01230, 2016[6]Song H M, Woo J Y, Kim H K. Invehicle network intrusion detection using deep convolutional neural network[EBOL]. (20200101). https:www.sciencedirect.comsciencearticlepiiS2214209619302451[7]Harald S, Eder S, Andrew H, et.al. A Commute in data: The comma2k19 dataset[J]. arXiv preprint, arXiv:1812.05752, 2018[8]Udacity. Selfdriving car engineer nanodegree[EBOL]. [20231122]. https:github.comudacityselfdrivingcar[9] Krajewski R, Bock J, Kloeker L, et al. The highD dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems[C] Proc of the 21st Int Conf on Intelligent Transportation Systems (ITSC). Piscataway, NJ: IEEE, 2018: 21182125 |