[1]Zheng Z, Xie S, Dai H N, et al. Blockchain challenges and opportunities: A survey[J]. International Journal of Web and Grid Services, 2018, 14(4): 352375[2]Wang Z, Jin H, Dai W, et al. Ethereum smart contract security research: Survey and future research opportunities[J]. Frontiers of Computer Science, 2021, 15: 118[3]崔展齐, 杨慧文, 陈翔, 等. 智能合约安全漏洞检测研究进展[J]. 软件学报, 2024, 35(5): 22352267[4]韩璇, 袁勇, 王飞跃. 区块链安全问题:研究现状与展望[J]. 自动化学报, 2019, 45(1): 206225[5]Torres C F, Iannillo A K, Gervais A, et al. Confuzzius: A data dependencyaware hybrid fuzzer for smart contracts[C] Proc of the 2021 IEEE European Symp on Security and Privacy (EuroS&P). Piscataway, NJ: IEEE, 2021: 103119[6]He J, Balunovi M, Ambroladze N, et al. Learning to fuzz from symbolic execution with application to smart contracts[C] Proc of the 2019 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2019: 531548[7]Chen W, Sun Z, Wang H, et al. Wasai: Uncovering vulnerabilities in wasm smart contracts[C] Proc of the 31st ACM SIGSOFT Int Symp on Software Testing and Analysis. New York: ACM, 2022: 703715[8]Bhme M, Szekeres L, Metzman J. On the reliability ofcoveragebased fuzzer benchmarking[C] Proc of the 44th Int Conf on Software Engineering. New York: ACM, 2022: 16211633[9]沈传年. 智能合约安全漏洞研究现状[J]. 信息安全研究, 2023, 9(12): 11661172[10]钱鹏, 刘振广, 何钦铭, 等. 智能合约安全漏洞检测技术研究综述[J]. 软件学报, 2022, 33(8): 30593085[11]Cadar C, Dunbar D, Engler D R. Klee: Unassisted and automatic generation of highcoverage tests for complex systems programs[C] Proc of USENIX Symp on Operating Systems Design and Implementation. Berkeley, CA: USENIX Association, 2008: 209224[12]Barrett C, Tinelli C. Satisfiability modulo theories[J]. Handbook of Model Checking, 2018: 305343[13]李舟军, 张俊贤, 廖湘科, 等. 软件安全漏洞检测技术[J]. 计算机学报, 2015, 38(4): 717732[14]Ochoa P, Castillo O, Soria J. Optimization of fuzzy controller design using a differential evolution algorithm with dynamic parameter adaptation based on type1 and interval type2 fuzzy systems[J]. Soft Computing, 2020, 24(1): 193214[15]Luo S, Xu H, Bi Y, et al. Boosting symbolic execution via constraint solving time prediction (experience paper)[C] Proc of the 30th ACM SIGSOFT Int Symp on Software Testing and Analysis. New York: ACM, 2021: 336347[16]Durieux T, Ferreira J F, Abreu R, et al. Empirical review of automated analysis tools on 47587 ethereum smart contracts[C] Proc of the 42nd ACMIEEE Int Conf on Software Engineering. New York: ACM, 2020: 530541[17]Luu L, Chu D H, Olickel H, et al. Making smart contracts smarter[C] Proc of the 2016 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2016: 254269[18]Nguyen T D, Pham L H, Sun J, et al. sFuzz: An efficient adaptive fuzzer for solidity smart contracts[C] Proc of the 42nd ACMIEEE Int Conf on Software Engineering. New York: ACM, 2020: 778788
|